Part Number Hot Search : 
PP80N0 XU310 68HC70 00250 1N5245B DN8797MS N5415 20501
Product Description
Full Text Search
 

To Download CY7C68013A-56LFC Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  preliminary cy7c68015a cy7c68013a cypress semiconductor corporation ? 3901 north first street ? san jose , ca 95134 ? 408-943-2600 document #: 38-08032 rev. *e revised june 8, 2004 cy7c68013a/cy7c68015a ez-usb fx2lp? usb microcontroller high-speed usb peripheral controller
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 2 of 63 table of contents 1.0 ez-usb fx2lp features ..................................................................................................... ....... 6 2.0 applications .............................................................................................................. ................. 7 3.0 functional overview ....................................................................................................... ....... 8 3.1 usb signaling speed ....................................................................................................... .......... 8 3.2 8051 microprocessor ....................................................................................................... ........... 8 3.2.1 8051 clock frequency .................................................................................................... .................. 8 3.2.2 usarts .................................................................................................................. .......................... 8 3.2.3 special function registers .............................................................................................. ................. 8 3.3 i 2 c bus ......................................................................................................................... ............... 8 3.4 buses ..................................................................................................................... ..................... 9 3.5 usb boot methods .......................................................................................................... ........... 9 3.6 renumeration? ............................................................................................................. ............ 9 3.7 bus-powered applications .................................................................................................. ........ 9 3.8 interrupt system .......................................................................................................... .............. 10 3.8.1 int2 interrupt request and enable registers ............................................................................. ... 10 3.8.2 usb-interrupt autovectors ............................................................................................... ............... 10 3.8.3 fifo/gpif interrupt (int4) .............................................................................................. ............... 11 3.9 reset and wakeup .......................................................................................................... ......... 11 3.9.1 reset pin ............................................................................................................... .......................... 11 3.9.2 wakeup pins ............................................................................................................. ...................... 12 3.10 program/data ram ......................................................................................................... ........ 12 3.10.1 size ................................................................................................................... ............................ 12 3.10.2 internal code memory, ea = 0 ........................................................................................... ........... 12 3.10.3 external code memory, ea = 1 .................. ......................................................................... ......... 12 3.11 register addresses ....................................................................................................... .......... 14 3.12 endpoint ram ............................................................................................................. ............ 15 3.12.1 size ................................................................................................................... ............................ 15 3.12.2 organization ........................................................................................................... ....................... 15 3.12.3 setup data buffer ...................................................................................................... .................... 15 3.12.4 endpoint configurations (high-speed mode) ........................ ...................................................... .. 15 3.12.5 default full-speed alternate settings ..... ............................................................................. ......... 16 3.12.6 default high-speed alternate settings ....... ........................................................................... ....... 16 3.13 external fifo interface .................................................................................................. ......... 16 3.13.1 architecture ........................................................................................................... ........................ 16 3.13.2 master/slave control signals ........................................................................................... ............. 16 3.13.3 gpif and fifo clock rates ................... ........................................................................... ........... 17 3.14 gpif ..................................................................................................................... ................... 17 3.14.1 six control out signals ...................... .......................................................................... ............... 17 3.14.2 six ready in signals . .................................................................................................. ................. 17 3.14.3 nine gpif address out si gnals .......................................................................................... ........ 17 3.14.4 long transfer mode ..................................................................................................... ................. 17 3.15 ecc generation ........................................................................................................... ........... 17 3.15.1 ecc implementation ...... ............................................................................................... ................ 17 3.16 usb uploads and downloads ................................................................................................ .18 3.17 autopointer access ....................................................................................................... .......... 18 3.18 i 2 c controller .................................................................................................................. ........ 18 3.18.1 i 2 c port pins ................................................................................................................... .............. 18 3.18.2 i 2 c interface boot load access .................................................................................................. .. 18 3.18.3 i 2 c interface general purpose acce ss ......................................................................................... 18
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 3 of 63 table of contents (continued) 3.19 compatible with previous generation ez-usb fx2 ............................................................... 19 3.20 cy7c68013a and cy7c68015a differences ......................................................................... 19 4.0 pin assignments ........................................................................................................... ........... 20 4.1 cy7c68013a/15a pin descriptions .......................................................................................... 2 6 5.0 register summary .......................................................................................................... ........ 34 6.0 absolute maximum ratings ................................................................................................ 41 7.0 operating conditions ...................................................................................................... ..... 41 8.0 dc characteristics ................................ ........................................... ............................. ....... 41 8.1 usb transceiver ........................................................................................................... ............ 41 9.0 ac electrical characteris tics ........................................ ................................ ............... 42 9.1 usb transceiver ........................................................................................................... ............ 42 9.2 program memory read ....................................................................................................... ...... 42 9.3 data memory read .......................................................................................................... ......... 43 9.4 data memory write ......................................................................................................... .......... 44 9.5 gpif synchronous signals .................................................................................................. ..... 45 9.6 slave fifo synchronous read ............................................................................................... .46 9.7 slave fifo asynchronous read .............................................................................................. 47 9.8 slave fifo synchronous write .............................................................................................. .. 48 9.9 slave fifo asynchronous write ............................................................................................. .. 49 9.10 slave fifo synchronous packet end strobe ......................................................................... 49 9.11 slave fifo asynchronous packet end strobe ....................................................................... 50 9.12 slave fifo output enable ................................................................................................. ..... 50 9.13 slave fifo address to flags/data ......................................................................................... 50 9.14 slave fifo synchronous address .......................................................................................... 5 1 9.15 slave fifo asynchronous address ........................................................................................ 51 9.16 sequence diagram ......................................................................................................... ........ 52 9.16.1 single and burst synchronous read example ........................................................................... 5 2 9.16.2 single and burst synchronous write ..................................................................................... ....... 53 9.16.3 sequence diagram of a sing le and burst asynchronous read .................................................... 54 9.16.4 sequence diagram of a sing le and burst asynchronous write .................................................... 55 10.0 ordering information ..................................................................................................... ... 56 11.0 package diagrams ......................................................................................................... ...... 57 12.0 pcb layout recommendations ........................................................................................ 60 13.0 quad flat package no leads (qfn ) package design notes ................................ 61
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 4 of 63 list of figures figure 1-1. block diagram ...................................................................................................... ................. 6 figure 3-1. crystal configuration.............................................................................................. ............... 8 figure 3-2. reset timing plots ................................................................................................. ............. 12 figure 3-3. internal code memory, ea = 0 ....................................................................................... ..... 13 figure 3-4. external code memory, ea = 1....................................................................................... .... 14 figure 3-5. endpoint configuration............................................................................................. ........... 15 figure 4-1. signals............................................................................................................ ..................... 21 figure 4-2. cy7c68013a 128-pin tqfp pin assignment..................................................................... 22 figure 4-3. cy7c68013a 100-pin tqfp pin assignment..................................................................... 23 figure 4-4. cy7c68013a/15a 56-pin ssop pin assignment ............................................................... 24 figure 4-5. cy7c68013a/15a 56-pin qfn pin assignment ................................................................. 25 figure 9-1. program memory read timing diagram............................................................................. 42 figure 9-2. data memory read timing diagram ................................................................................... 4 3 figure 9-3. data memory write timing diagram ................................................................................... 44 figure 9-4. gpif synchronous signals timing diagram ....................................................................... 45 figure 9-5. slave fifo synchronous read timing diagram ................................................................ 46 figure 9-6. slave fifo asynchronous read timing diagram .............................................................. 47 figure 9-7. slave fifo synchronous write timing diagram ................................................................ 48 figure 9-8. slave fifo asynchronous write timing diagram............................................................... 49 figure 9-9. slave fifo synchronous packet end strobe timing diagram ........................................... 49 figure 9-10. slave fifo asynchronous packet end strobe timing diagram ....................................... 50 figure 9-11. slave fifo output enable timing diagram ...................................................................... 50 figure 9-12. slave fifo address to flags/data timing diagram ......................................................... 50 figure 9-13. slave fifo synchronous address timing diagram.......................................................... 51 figure 9-14. slave fifo asynchronous address timing diagram ........................................................ 51 figure 9-15. slave fifo synchronous re ad sequence and timing diagram ...................................... 52 figure 9-16. slave fifo synchronous sequence of events diagram .................................................. 52 figure 9-17. slave fifo synchronous wr ite sequence and timing diagram ...................................... 53 figure 9-18. slave fifo asynchronous read sequence and timing diagram .................................... 54 figure 9-19. slave fifo asynchronous read sequence of events diagram ....................................... 54 figure 9-20. slave fifo asynchronous write sequence and timing diagram .................................... 55 figure 11-1. 56-lead shrunk small outline package o56..................................................................... 57 figure 11-2. 56-lead quad flatpack no lead package (8 ? 8 mm) lf56............................................. 57 figure 11-3. 100-pin thin plastic quad flat pack (14 x 20 x 1.4 mm) a101.......................................... 58 figure 11-4. 128-lead thin plastic quad flatpa ck (14 x 20 x 1.4 mm) a128 ....................................... 59 figure 13-1. cross-section of the area underneath the qfn package ................................................ 61 figure 13-2. plot of the solder mask (white area) .............................................................................. .. 61 figure 13-3. x-ray image of the assembly ....................................................................................... ..... 61
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 5 of 63 list of tables table 3-1. special function registers ......................................................................................... ........... 9 table 3-2. default id values for fx2lp ........................................................................................ ......... 9 table 3-3. int2 usb interrupts ................................................................................................ ............ 10 table 3-4. individual fifo/gpif interrupt sources ............................................................................. .11 table 3-5. reset timing values ................................................................................................ ........... 12 table 3-6. default full-speed alternate settings .............................................................................. ... 16 table 3-7. default high-speed alternate settings............................................................................... .. 16 table 3-8. strap boot eeprom address lines to these values ........................................................ 18 table 3-9. part number conversion table ....................................................................................... .... 19 table 3-10. cy7c68013a and cy7c68015a pin differences .............................................................. 19 table 4-1. fx2lp pin descriptions ............................................................................................. .......... 26 table 5-1. fx2lp register summary ............................................................................................. ...... 34 table 8-1. dc characteristics ................................................................................................. .............. 41 table 9-1. program memory read parameters .................................................................................... 4 2 table 9-2. data memory read parameters ........................................................................................ .. 43 table 9-3. data memory write parameters ....................................................................................... ... 44 table 9-4. gpif synchronous signals parameters with internally sourced ifclk .............................. 45 table 9-5. gpif synchronous signals parameters with externally sourced ifclk ............................. 45 table 9-6. slave fifo synchronous read parameters with internally sourced ifclk........................ 46 table 9-7. slave fifo synchronous read parame ters with externally sourced ifclk ...................... 46 table 9-8. slave fifo asynchronous read parameters ...................................................................... 47 table 9-9. slave fifo synchronous write parameters with internally sourced ifclk ....................... 48 table 9-10. slave fifo synchronous write parameters with externally sourced ifclk..................... 48 table 9-11. slave fifo asynchronous write parameters with internally sourced ifclk ................... 49 table 9-12. slave fifo synchronous packet end stro be parameters with internally sourced ifclk 49 table 9-13. slave fifo synchronous packet end stro be parameters with externally sourced ifclk49 table 9-14. slave fifo asynchronous packet end strobe parameters ............................................... 50 table 9-15. slave fifo output enable parameters ............................................................................. 50 table 9-16. slave fifo address to flags/data parameters ................................................................ 50 table 9-17. slave fifo synchronous address parameters ................................................................. 51 table 9-18. slave fifo asynchronous address parameters ............................................................... 51 table 10-1. ordering information .............................................................................................. ............ 56
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 6 of 63 1.0 ez-usb fx2lp ? features cypress semiconductor corporation?s (cypress?s) ez-usb fx2lp ? (cy7c68013a) is a low-power version of the ez-usb fx2, which is a highly integrated, low-power usb 2.0 microcontroller. by integrating the usb 2.0 tran sceiver, serial interface engin e (sie), enhanced 8051 microcontroller, and a programmable peripheral interface in a si ngle chip, cypress has created a very cost - effective solution that provides superior time-to-market ad vantages with low power to enable bus powered applications. the ingenious architecture of fx2lp results in data transfer ra tes of over 53 mbytes per second, the maximum-allowable usb 2.0 bandwidth, while still using a low-cost 8051 microcontroller in a package as small as a 56 qfn. because it incorporates the usb 2.0 transceiver, the fx2lp is more econo mical, providing a smaller footprint solu tion than usb 2.0 sie or external trans- ceiver implementations. with ez-usb fx2lp, the cypress smart si e handles most of the usb 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for applic ation-specific functions and decreasing development time to ensure usb compat- ibility. the general programmable interface (gpif) and master/slave endpoint fi fo (8- or 16-bit data bus) provides an easy and glueless interface to popular interfaces such as ata, utopia, epp, pcmcia, and most dsp/processors. the fx2lp draws considerably less current than the fx2 (cy7c6 8013), has double the on-chip code/data ram and is fit, form and function compatible with the 56, 100 and 128 pin fx2. four packages are defined for the family: 56 ssop, 56 qfn, 100 tqfp, and 128 tqfp. ? single-chip integrated usb 2.0 transcei ver, sie, and enhanced 8051 microprocessor ? fit, form and function co mpatible with the fx2 ? pin-compatible ? object-code-compatible ? functionally-compatible (fx2lp func tionality is a superset of the fx2) ? draws no more than 85 ma in any mode making the fx2lp suitable for bus powered applications ? software: 8051 runs from internal ram, which is: ? downloaded via usb ? loaded from eeprom ? external memory device (128-pin configuration only) ? 16 kbytes of on-chip code/data ram ? four programmable bulk/interrupt/isochronous endpoints ? buffering options: double, triple, and quad ? additional programmable (bul k/interrupt) 64-byte endpoint address (16) x20 pll /0.5 /1.0 /2.0 8051 core 12/24/48 mhz, four clocks/cycle i 2 c vcc 1.5k d+ d? address (16) / data bus (8) fx2lp gpif cy smart usb 1.1/2.0 engine usb 2.0 xcvr 16 kb ram 4 kb fifo integrated full- and high-speed xcvr additional i/os (24) addr (9) ctl (6) rdy (6) 8/16 data (8) 24 mhz ext. xtal enhanced usb core simplifies 8051 code ?soft configuration? easy firmware changes fifo and endpoint memory (master or slave operation) up to 96 mbytes/s burst rate general programmable i/f to asic/dsp or bus standards such as atapi, epp, etc. abundant i/o including two usarts high-performance micro using standard tools with lower-power options master figure 1-1. block diagram connected for full speed ecc
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 7 of 63 ? 8- or 16-bit external data interface ? smart media standard ecc generation ?gpif ? allows direct connection to most parallel interfaces; 8- and 16-bit ? programmable waveform descriptors and conf iguration registers to define waveforms ? supports multiple ready (rdy) inputs and control (ctl) outputs ? integrated, industry standard 8051 with enhanced features ? up to 48-mhz clock rate ? four clocks per instruction cycle ? two usarts ? three counter/timers ? expanded interrupt system ? two data pointers ? 3.3v operation with 5v tolerant inputs ? smart sie ? vectored usb interrupts ? separate data buffers for the setup and data portions of a control transfer ? integrated i 2 c controller, runs at 100 or 400 khz ? 48-mhz, 24-mhz, or 12-mhz 8051 operation ? four integrated fifos ? brings glue and fifos insi de for lower system cost ? automatic conversion to and from 16-bit buses ? master or slave operation ? fifos can use externally supplied clock or asynchronous strobes ? easy interface to asic and dsp ics ? vectored for fifo and gpif interrupts ? up to 40 general purpose i/os ? four package options?128-pin tqfp, 100-pin tqfp, 56-pin qfn and 56-pin ssop lead-free ? usb 2.0-compatible 2.0 applications ? portable video recorder ? mpeg/tv conversion ? dsl modems ? ata interface ? memory card readers ? legacy conversion devices ? cameras ? scanners ? home pna ? wireless lan ? mp3 players ? networking the ?reference designs? section of the cypress website provi des additional tools for typical usb 2.0 applications. each referen ce design comes complete with firmware source and object code, schematics, and docu mentation. please visit http://www.cypress.com for more information.
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 8 of 63 3.0 functional overview 3.1 usb signaling speed fx2lp operates at two of the three rates defined in th e usb specification revision 2.0, dated april 27, 2000: ? full speed, with a signaling bit rate of 12 mbps. ? high speed, with a signaling bit rate of 480 mbps. fx2lp does not support the low-speed signaling mode of 1.5 mbps. 3.2 8051 microprocessor the 8051 microprocessor embedded in the fx2lp family has 256 byte s of register ram, an expanded interrupt system, three timer/counters, and two usarts. 3.2.1 8051 clock frequency fx2lp has an on-chip oscillator circuit that uses an exter nal 24-mhz (100 ppm) crystal with the following characteristics: ? parallel resonant ? fundamental mode ? 500- w drive level ? 12-pf (5% tolerance) load capacitors. an on-chip pll multiplies the 24-mhz oscillator up to 480 mhz, as required by the transceiver/p hy, and internal counters divide it down for use as the 8051 clock. the default 8051 clock fre quency is 12 mhz. the clock frequency of the 8051 can be changed by the 8051 through the cpucs register, dynamically. the clkout pin, which can be three-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency?48, 24, or 12 mhz. 3.2.2 usarts fx2lp contains two standard 8051 usarts, addressed via special function register (sfr) bits. the usart interface pins are available on separate i/o pins, and are not multiplexed with port pins. uart0 and uart1 can operate using an internal clock at 230 kbaud with no more than 1% baud rate error. 230-kbaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. the internal clock ad justs for the 8051 clock rate (48, 24, 12 mhz) such that it always presents the correct frequency for 230-kbaud operation. [1] 3.2.3 special function registers certain 8051 sfr addresses are populated to provide fast access to critical fx2lp functions. these sfr additions are shown in table 3-1 . bold type indicates non-standard, enhanced 8051 registers. the two sfr rows that end with ?0? and ?8? contain bit- addressable registers. the four i/o ports a?d use the sfr add resses used in the standard 8051 for ports 0?3, which are not implemented in fx2lp. because of the faster and more effici ent sfr addressing, the fx2lp i/o ports are not addressable in external ram space (using the movx instruction). 3.3 i 2 c bus fx2lp supports the i 2 c bus as a master only at 100/400 khz. scl and sda pins have open-drain outputs and hysteresis inputs. these signals must be pulled up to 3.3v, even if no i 2 c device is connected. note: 1. 115-kbaud operation is also possible by programming the 8051 sm od0 or smod1 bits to a ?1? for uart0 and/or uart1, respectivel y. figure 3-1. crystal configuration 12 pf 12 pf 24 mhz 20 pll c1 c2 12-pf capacitor values assumes a trace capacitance of 3 pf per side on a four-layer fr4 pca
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 9 of 63 3.4 buses all packages: 8- or 16-bit ?fifo? bidirectional data bus, mult iplexed on i/o ports b and d. 1 28-pin package: adds 16-bit output - only 8051 address bus, 8-bit bidirectional data bus. 3.5 usb boot methods during the power-up sequence, internal logic checks the i 2 c port for the connection of an eeprom whose first byte is either 0xc0 or 0xc2. if found, it uses the vid/pi d/did values in the eeprom in place of the internally stored values (0xc0), or it boo t- loads the eeprom contents into internal ra m (0xc2). if no eeprom is detected, fx 2lp enumerates usi ng internally stored descriptors. the default id values fo r fx2lp are vid/pid/did (0x04b4, 0x 8613, 0xaxxx where xxx=chip revision). [2] 3.6 renumeration? because the fx2lp?s configuration is soft, one chip can ta ke on the identities of multiple distinct usb devices. when first plugged into usb, the fx2lp e numerates automatically and downloads firmwar e and usb descriptor tables over the usb cable. next, the fx2lp enumerates again, this time as a device defined by the downloaded in formation. this patented two- step process, ca lled renumeration ? , happens instantly when the device is plugged in , with no hint that the initial download step has occurred. two control bits in the usbcs (usb control and status) regi ster control the renumeration process: discon and renum. to simulate a usb disconnect, the firmware sets discon to 1. to reconnect, the firmware clears discon to 0. before reconnecting, the firmware sets or clears the renum bit to indicate whether the firmware or the default usb device will handle device requests over endpoint zero: if renum = 0, the default usb device will handle device requests; if renum = 1, the firmware will. 3.7 bus-powered applications the fx2lp fully supports bus-powered designs by enumerating wit h less than 100 ma as required by the usb 2.0 specification. note: 2. the i 2 c bus scl and sda pins must be pulled up, even if an eeprom is not connected. otherwise this det ection method does not work pro perly. table 3-1. special function registers x8x 9x ax bx cxdxexfx 0 ioa iob ioc iod scon1 psw acc b 1sp exif int2clr ioe sbuf1 2dpl0 mpage int4clr oea 3dph0 oeb 4 dpl1 oec 5 dph1 oed 6 dps oee 7pcon 8 tcon scon0 ie ip t2con eicon eie eip 9 tmod sbuf0 atl0 autoptrh1 ep2468stat ep01stat rcap2l btl1 autoptrl1 ep24fifoflgs gpiftrig rcap2h cth0 reserved ep68fifoflgs tl2 dth1 autoptrh2 gpifsgldath th2 e ckcon autoptrl2 gpifsgldatlx f reserved autoptrsetup gpifsgldatlnox table 3-2. default id values for fx2lp default vid/pid/did vendor id 0x04b4 cypress semiconductor product id 0x8613 ez-usb fx2lp device release 0xannn depends chip revision (nnn = chip revision where first silicon = 001)
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 10 of 63 3.8 interrupt system 3.8.1 int2 interrupt requ est and enable registers fx2lp implements an autovector feature for int2 and int4. ther e are 27 int2 (usb) vectors, and 14 int4 (fifo/gpif) vectors. see ezusb technical reference manual (trm) for more details. 3.8.2 usb-interrupt autovectors the main usb interrupt is shared by 27 interrupt sources. to save the code and processing time that normally would be required to identify the individual usb interrupt s ource, the fx2lp provides a second level of interrupt vectoring, called autovectoring . when a usb interrupt is asserted, the fx 2lp pushes the program counter onto its stack then jumps to address 0x0043, where it expects to find a ?jump? instruction to the usb interrupt service routine. the fx2lp jump instruction is encoded as follows. table 3-3. int2 usb interrupts usb interrupt table for int2 priority int2vec value source notes 1 00 sudav setup data available 2 04 sof start of frame (or microframe) 3 08 sutok setup token received 4 0c suspend usb suspend request 5 10 usb reset bus reset 6 14 hispeed entered hi gh speed operation 7 18 ep0ack fx2lp ack?d the control handshake 8 1c reserved 9 20 ep0-in ep0-in ready to be loaded with data 10 24 ep0-out ep0-out has usb data 11 28 ep1-in ep1-in ready to be loaded with data 12 2c ep1-out ep1-out has usb data 13 30 ep2 in: buffer available. out: buffer has data 14 34 ep4 in: buffer available. out: buffer has data 15 38 ep6 in: buffer available. out: buffer has data 16 3c ep8 in: buffer available. out: buffer has data 17 40 ibn in-bulk-nak (any in endpoint) 18 44 reserved 19 48 ep0ping ep0 out was pinged and it nak?d 20 4c ep1ping ep1 out was pinged and it nak?d 21 50 ep2ping ep2 out was pinged and it nak?d 22 54 ep4ping ep4 out was pinged and it nak?d 23 58 ep6ping ep6 out was pinged and it nak?d 24 5c ep8ping ep8 out was pinged and it nak?d 25 60 errlimit bus errors exceeded the programmed limit 26 64 27 68 reserved 28 6c reserved 29 70 ep2isoerr iso ep2 out pid sequence error 30 74 ep4isoerr iso ep4 out pid sequence error 31 78 ep6isoerr iso ep6 out pid sequence error 32 7c ep8isoerr iso ep8 out pid sequence error
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 11 of 63 if autovectoring is enabled (av2en = 1 in the intsetup regist er), the fx2lp substitutes its int2vec byte. therefore, if the high byte (?page?) of a jump-table address is preloaded at lo cation 0x0044, the automatically-inserted int2vec byte at 0x0045 will direct the jump to the correct addre ss out of the 27 addresses within the page. 3.8.3 fifo/gpif interrupt (int4) just as the usb interrupt is shared among 27 individual usb-in terrupt sources, the fifo/gpif interrupt is shared among 14 individual fifo/gpif sources. the fifo/gpif interrupt, like the usb inte rrupt, can employ autovectoring. table 3-4 shows the priority and int4vec values for th e 14 fifo/gpif interrupt sources if autovectoring is enabled (av4en = 1 in the intsetup regist er), the fx2lp substitutes its int4vec byte. therefore, if the high byte (?page?) of a jump-table address is preloaded at lo cation 0x0054, the automatically-inserted int4vec byte at 0x0055 will direct the jump to the correct addre ss out of the 14 addresses within the page. when the isr occurs, the fx2lp pushes the program counter onto its stack then jumps to address 0x0053, where it expects to find a ?jump? instruction to the isr interrupt service routine. 3.9 reset and wakeup 3.9.1 reset pin the input pin, reset#, will reset the fx2lp when asserted. this pin has hysteresis and is active low. when a crystal is used with the cy7c680xxa the reset period must al low for the stabilization of the crystal and the pll. this reset period should be approximately 5 msec after vcc has reached 3.0 volts. if the crystal input pin is driven by a clock signal the internal pll sta bilizes in 200 s after vcc has reached 3.0 volts [3] . figure 3-2 shows a power on reset condition and a reset applied during operation. a power on reset is defined as the time reset is asserted while power is being applied to the circuit. a powered reset is defin ed to be when the fx2lp has previo usly been powered on and operating and the reset# pin is asserted. cypress provides an application note whic h describes and recommends power on reset implementation and can be found on the cypress web site. for more information on reset implementation fo r the fx2 family of products visit the http://www.cypress.com. note: 3. if the external clock is powered at the same time as the cy7c680xxa and has a stabilization wait period, it must be added to the 200 s. table 3-4. individual fifo/gpif interrupt sources priority int4vec value source notes 1 80 ep2pf endpoint 2 programmable flag 2 84 ep4pf endpoint 4 programmable flag 3 88 ep6pf endpoint 6 programmable flag 4 8c ep8pf endpoint 8 programmable flag 5 90 ep2ef endpoint 2 empty flag 6 94 ep4ef endpoint 4 empty flag 7 98 ep6ef endpoint 6 empty flag 8 9c ep8ef endpoint 8 empty flag 9 a0 ep2ff endpoint 2 full flag 10 a4 ep4ff endpoint 4 full flag 11 a8 ep6ff endpoint 6 full flag 12 ac ep8ff endpoint 8 full flag 13 b0 gpifdone gpif operation complete 14 b4 gpifwf gpif waveform
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 12 of 63 3.9.2 wakeup pins the 8051 puts itself and the rest of the chip into a power-down mode by setting pcon.0 = 1. this stops the oscillator and pll. when wakeup is asserted by external logic, the oscillator rest arts, after the pll stabilizes, and then the 8051 receives a wake up interrupt. this applies whether or not fx2lp is connected to the usb. the fx2lp exits the power down (usb suspend) state using one of the following methods: ? usb bus activity (if d+/d- lines are left floating, noise on thes e lines may indicate activity to the fx2lp and initiate a wak eup). ? external logic asserts the wakeup pin ? external logic asserts the pa3/wu2 pin. the second wakeup pin, wu2, can also be configured as a general purpose i/o pin. this allows a simple external r-c network to be used as a periodic wakeup source. no te that wakeup is by default active low. 3.10 program/data ram 3.10.1 size the fx2lp has 16 kbytes of internal program/data ram, wher e psen#/rd# signals are internally ored to allow the 8051 to access it as both program and data memory. no usb control registers appear in this space. two memory maps are shown in the following diagrams: figure 3-3 internal code memory, ea = 0 figure 3-4 external code memory, ea = 1. 3.10.2 internal code memory, ea = 0 this mode implements the internal 16kbyte block of ram (sta rting at 0) as combined code and data memory. when external ram or rom is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. this allows the user to connect a 64 kbyte memory without requiring address decodes to keep clear of internal memory spaces. only the internal 16kbytes and scratch pad 0.5 kbytes ram spaces have the following access: ? usb download ? usb upload ? setup data pointer ?i 2 c interface boot load. 3.10.3 external code memory, ea = 1 the bottom 16kbytes of program memory is external, and therefore the bottom 16kbytes of internal ram is accessible only as data memory. figure 3-2. reset timing plots table 3-5. reset timing values condition t reset power-on reset with crystal 5 ms power-on reset with external clock 200 s + clock stability time powered reset 200 s v il 0v 3.3v 3.0v t reset vcc reset# power on reset t reset vcc reset# v il powered reset 3.3v 0v
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 13 of 63 figure 3-3. internal code memory, ea = 0 inside fx2lp outside fx2lp 7.5 kbytes usb regs and 4k fifo buffers (rd#,wr#) 0.5 kbytes ram data (rd#,wr#)* (ok to populate data memory here?rd#/wr# strobes are not active) 40 kbytes external data memory (rd#,wr#) (ok to populate data memory here?rd#/wr# strobes are not active) 16 kbytes ram code and data (psen#,rd#,wr#)* 48 kbytes external code memory (psen#) (ok to populate program memory here? psen# strobe is not active) *sudptr, usb upload/download, i 2 c interface boot access ffff e200 e1ff e000 3fff 0000 data code
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 14 of 63 3.11 register addresses figure 3-4. external code memory, ea = 1 inside fx2lp outside fx2lp 7.5 kbytes usb regs and 4k fifo buffers (rd#,wr#) 0.5 kbytes ram data (rd#,wr#)* (ok to populate data memory here?rd#/wr# strobes are not active) 40 kbytes external data memory (rd#,wr#) (ok to populate data memory here?rd#/wr# strobes are not active) 16 kbytes ram data (rd#,wr#)* 64 kbytes external code memory (psen#) *sudptr, usb upload/download, i 2 c interface boot access ffff e200 e1ff e000 3fff 0000 data code ffff e800 e7bf e740 e73f e700 e6ff e500 e4ff e480 e47f e400 e200 e1ff e000 e3ff efff 2 kbytes reserved 64 bytes ep0 in/out 64 bytes reserved 8051 addressable registers reserved (128) 128 bytes gpif waveforms 512 bytes 8051 xdata ram f000 (512) reserved (512) e780 64 bytes ep1out e77f 64 bytes ep1in e7ff e7c0 4 kbytes ep2-ep8 buffers (8 x 512)
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 15 of 63 3.12 endpoint ram 3.12.1 size ? 3 64 bytes (endpoints 0 and 1) ? 8 512 bytes (endpoints 2, 4, 6, 8) 3.12.2 organization ? ep0 bidirectional endpoint zero, 64-byte buffer ? ep1in, ep1out 64-byte buffers, bulk or interrupt ? ep2,4,6,8 eight 512-byte buffers, bulk, interrupt, or isochronous. ep4 and ep8 can be double buffered, while ep2 and 6 can be either double, triple, or quad buffered. for high-speed endpoint configuration options, see figure 3-5 . 3.12.3 setup data buffer a separate 8-byte buffer at 0xe6b8-0xe6bf ho lds the setup data from a control transfer. 3.12.4 endpoint configurations (high-speed mode) endpoints 0 and 1 are the same for every configuration. endpoi nt 0 is the only control endpoint, and endpoint 1 can be either bulk or interrupt. the endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. when operating in full-speed bulk mode only the first 64 bytes of each buffer are used. for example in high-speed, the max packet size is 512 bytes but in full-speed it is 64 bytes. even though a buffer is configured to be a 512 byte buffer, in full- speed only the first 64 bytes are used. the unused endpoint buffer sp ace is not available for other operations. an example endpoint configuration would be: ep2?1024 double buffered; ep6?512 quad buffered (column 8). 64 64 64 512 512 1024 1024 1024 1024 1024 1024 1024 512 512 512 512 512 512 512 512 512 512 ep2 ep2 ep2 ep6 ep6 ep8 ep8 ep0 in&out ep1 in ep1 out figure 3-5. endpoint configuration 1024 1024 ep6 1024 512 512 ep8 512 512 ep6 512 512 512 512 ep2 512 512 ep4 512 512 ep2 512 512 ep4 512 512 ep2 512 512 ep4 512 512 ep2 512 512 512 512 ep2 512 512 512 512 ep2 512 512 1024 ep2 1024 1024 ep2 1024 1024 ep2 1024 512 512 ep6 1024 1024 ep6 512 512 ep8 512 512 ep6 512 512 512 512 ep6 1024 1024 ep6 512 512 ep8 512 512 ep6 512 512 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 1 2 3 4 5 6 7 8 9 10 11 12
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 16 of 63 3.12.5 default full-speed alternate settings 3.12.6 default high-spee d alternate settings 3.13 external fifo interface 3.13.1 architecture the fx2lp slave fifo architecture has eight 512-byte blocks in the endpoint ram that directly serve as fifo memories, and are controlled by fifo control si gnals (such as ifclk, slcs#, slrd, slwr, sloe, pktend, and flags). in operation, some of the eight ram blocks fill or empty from the sie, while the ot hers are connected to the i/o transfer logic . the transfer logic takes two forms, the gpif for internally gen erated control signals, or the slave fifo interface for external ly controlled transfers. 3.13.2 master/slave control signals the fx2lp endpoint fifos are implemented as eight physically distinct 256x16 ram blocks. th e 8051/sie can switch any of the ram blocks between two domains, the usb (sie) domain and the 8051- i/o unit domain. this s witching is done virtually instantaneously, giving essentially zero transfer time between ?usb fifos? and ?slave fifos.? since they are physically the same memory, no bytes are actual ly transferred between buffers. at any given time, some ram blocks are f illing/emptying with usb data under sie cont rol, while other ram blocks are available to the 8051 and/or the i/o control unit. the ram blocks operate as single-port in the usb domain, and dual-port in the 8051-i/o domain. the blocks can be configured as single, do uble, triple, or quad buffered as previously shown. the i/o control unit implements either an internal-master (m for master) or external-master (s for slave) interface. in master (m) mode, the gpif internally cont rols fifoadr[1..0] to select a fifo. the rdy pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs fr om an external fifo or other logic if desired. the gpif can be run from either an internally derived clock or externally su pplied clock (ifclk), at a rate that transfers data up to 96 megabytes/s (48-mhz ifclk with 16-bit interface). notes: 4. ?0? means ?not implemented.? 5. ?2? means ?double buffered.? 6. even though these buffers are 64 bytes, they are reported as 512 for usb 2.0 compliance. the user must never transfer packets larger than 64 bytes to ep1. table 3-6. default full-speed alternate settings [4, 5] alternate setting 0 1 2 3 ep0 64646464 ep1out 0 64 bulk 64 int 64 int ep1in 0 64 bulk 64 int 64 int ep2 0 64 bulk out (2) 64 int out (2) 64 iso out (2) ep4 0 64 bulk out (2) 64 bulk out (2) 64 bulk out (2) ep6 0 64 bulk in (2) 64 int in (2) 64 iso in (2) ep8 0 64 bulk in (2) 64 bulk in (2) 64 bulk in (2) table 3-7. default high -speed alternate settings [4, 5] alternate setting 0 1 2 3 ep0 64646464 ep1out 0 512 bulk [6] 64 int 64 int ep1in 0 512 bulk [6] 64 int 64 int ep2 0 512 bulk out (2) 512 int out (2) 512 iso out (2) ep4 0 512 bulk out (2) 512 bulk out (2) 512 bulk out (2) ep6 0 512 bulk in (2) 512 int in (2) 512 iso in (2) ep8 0 512 bulk in (2) 512 bulk in (2) 512 bulk in (2)
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 17 of 63 in slave (s) mode, the fx2lp accepts either an internally deriv ed clock or externally supplied clock (ifclk, max. frequency 48 mhz) and slcs#, slrd, slwr, sloe, pktend si gnals from external logic. when using an external ifclk, the external clock must be present before switching to the external clock with the if clksrc bit. each endpoint can individually be selected for by te or word operation by an internal configuration bit, and a slav e fifo output enable signal sloe enables data of the selected width. external logic must insure that the output enable signal is inactive when writ ing data to a slave fifo. the slave interf ace can also operate asynchronously, where the slrd and slwr signal s act directly as strobes, rath er than a clock qualifier as in synchronous mode. the signals slrd, slwr, sloe and pktend are gated by the signal slcs#. 3.13.3 gpif and fifo clock rates an 8051 register bit selects one of two frequencies for the intern ally supplied interface clock: 30 mhz and 48 mhz. alternative ly, an externally supplied clock of 5 mhz ? 48 mhz feeding the ifclk pi n can be used as the interface clock. ifclk can be configure d to function as an output clock when the gpif and fifos are inte rnally clocked. an output enable bit in the ifconfig register turns this clock output off, if desired. an other bit within the ifconfig register will invert the ifclk signal whether internal ly or externally sourced. 3.14 gpif the gpif is a flexible 8- or 16-bit parallel interface driven by a user-programmable finite state machine. it allows the cy7c68013a/15a to perform local bus mastering, and can implement a wide variety of protocols such as ata interface, printer parallel port, and utopia. the gpif has six programmable control outputs (ctl), nine a ddress outputs (gpifadrx), and six general-purpose ready inputs (rdy). the data bus width can be 8 or 16 bits. each gpif vect or defines the state of the cont rol outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. the gpif vector can be programmed to advance a fifo to the next data value, advance an address, et c. a sequence of the gpif vectors make up a single waveform that will be executed to perform the desired data move between the fx2lp and the external device. 3.14.1 six control out signals the 100- and 128-pin packages bring out all six control output pins (ctl0-ctl5). the 8051 programs the gpif unit to define the ctl waveforms. the 56-pin package brings out three of these signals, ctl0?ctl2. ctlx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-mhz clock). 3.14.2 six ready in signals the 100- and 128-pin packages bring out all six ready inputs ( rdy0?rdy5). the 8051 programs t he gpif unit to test the rdy pins for gpif branching. the 56-pin package brings out two of these signals, rdy0?1. 3.14.3 nine gpif address out signals nine gpif address lines are available in the 100- and 128-pin pa ckages, gpifadr[8..0]. the gpif address lines allow indexing through up to a 512-byte block of ram. if more address lines are needed, i/o port pins can be used. 3.14.4 long transfer mode in master mode, the 8051 appropriately sets gpif transa ction count registers (gpift cb3, gpiftcb2, gpiftcb1, or gpiftcb0) for unattended transfers of up to 2 32 transactions. the gpif automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete . the gpif decrements the value in these registers to represen t the current status of the transaction. 3.15 ecc generation [7] the ez-usb can calculate eccs (error-correcting codes) on data that passes across its gpif or slave fifo interfaces. there are two ecc configurations: two eccs, each calculated over 256 bytes (smartmedia? st andard); and one ecc ca lculated over 512 bytes. the ecc can correct any one-bit erro r or detect any two-bit error. 3.15.1 ecc implementation the two ecc configurations are selected by the eccm bit: 3.15.1.1 eccm=0 two 3-byte eccs, each calculated over a 256-byte block of da ta. this configuration conforms to the smartmedia standard. note: 7. to use the ecc logic, the gpif or slave fifo interface must be configured for byte-wide operation.
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 18 of 63 write any value to eccreset, then pass data across the gpif or slave fifo interface. the ecc for the firs t 256 bytes of data will be calculated and stored in ecc1. the ecc for the next 256 by tes will be stored in ecc2. after the second ecc is calculate d, the values in the eccx registers will not change until eccreset is writ ten again, even if more data is subsequently passed across the interface. 3.15.1.2 eccm=1 one 3-byte ecc calculated over a 512-byte block of data. write any value to eccreset then pass data across the gpif or slave fifo interface. the ecc for the first 512 bytes of data will be calculated and stored in ecc1; ecc2 is unused. after t he ecc is calculated, the value in ecc1 will not change until eccreset is written again, even if more data is subsequently passed across the interface 3.16 usb uploads and downloads the core has the ability to directly edit the data contents of the internal 16 kbyte ram and of the internal 512-byte scratch p ad ram via a vendor-specific command. this capability is normally used when ?soft? downloading user code and is available only to and from internal ram, only when the 8051 is held in reset. the available ram spaces are 16 kbytes from 0x0000?0x3fff (code/data) and 512 bytes from 0xe000?0xe1ff (scratch pad data ram). [8] 3.17 autopointer access fx2lp provides two identical autopointers. they are similar to the internal 8051 data pointers, but with an additional feature: they can optionally increment after every memory access. this capability is available to and from both internal and external ram. th e autopointers are available in external fx 2lp registers, under control of a mode bit (autoptrsetup.0). using the external fx2lp autopointer access (at 0xe67b ? 0xe67c) allows the autopoint er to access all ram, internal and external to the part. also, the autopointers can point to any fx 2lp register or endpoint buffer space. when autopointer access to external memory is enabled, location 0xe67b and 0xe67c in xdata and code space cannot be used. 3.18 i 2 c controller fx2lp has one i 2 c port that is driven by two internal controllers, one that autom atically operates at boot time to load vid/pid/did and configuration information, and an other that the 8051, once running, uses to control external i 2 c devices. the i 2 c port operates in master mode only. 3.18.1 i 2 c port pins the i 2 c- pins scl and sda must have external 2.2-k ? pull-up resistors even if no eeprom is connected to the fx2lp. external eeprom device address pins must be configured properly. see table 3-8 for configuring the device address pins. 3.18.2 i 2 c interface boot load access at power-on reset the i 2 c interface boot loader will load t he vid/pid/did configuration bytes an d up to 16 kbytes of program/data. the available ram spaces are 16 kbytes from 0x0000?0x3fff an d 512 bytes from 0xe000?0xe1ff. the 8051 will be in reset. i 2 c interface boot loads only occur after power-on reset. 3.18.3 i 2 c interface general purpose access the 8051 can control peripherals connected to the i 2 c bus using the i2ctl and i2dat registers. fx2lp provides i 2 c master control only, it is never an i 2 c slave. notes: 8. after the data has been downloaded from the host, a ?loader? can execute from internal ram in order to transfer downloaded da ta to external memory. 9. this eeprom does not have address pins. table 3-8. strap boot eeprom address lines to these values bytes example eeprom a2 a1 a0 16 24lc00 [9] n/a n/a n/a 128 24lc01 0 0 0 256 24lc02 0 0 0 4k 24lc32 0 0 1 8k 24lc64 0 0 1 16k 24lc128 0 0 1
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 19 of 63 3.19 compatible with previous generation ez-usb fx2 the ez-usb fx2lp is form/fit and with minor exceptions functi onally compatible with its predecessor, the ez-usb fx2. this makes for an easy transition for designers wanting to upgrade th eir systems from the fx2 to the fx2lp. the pin out and package selection are identical, and the vast ma jority of firmware previously developed for the fx2 will function in the fx2lp. for designers migrating from the fx2 to the fx2lp a change in t he bill of material and review of the memory allocation (due to increased internal memory) is required for more information about migrating from ez-usb fx2 to ez-usb fx2lp, please see further details in the application note entitled migrating from ez-usb fx2 to ez-usb fx2lp , which is available on the cypress website. 3.20 cy7c68013a and cy7c68015a differences two additional gpio signals are available on the cy7c68015a to provide more flexibility when neither ifclk or clkout are needed in the 56-pin package. the usb developers who want to convert their fx2 56-pin application to a bus-powered system will directly benefit from these additional signals. the two gpios will give these developers the signals they need for the pow er control circuitry of their bus-powered ap plication without pushing them to a high- pincount version of fx2lp. the cy7c68015a is only available in the 56-pin package options. table 3-9. part number conversion table ez-usb fx2 part number ez-usb fx2lp part numb er package description cy7c68013-56pvc cy7c68013a-56pvc 56-pin ssop cy7c68013-56pvct cy7c68013a-56pvct 56-pin ssop ? tape and reel cy7c68013-56lfc CY7C68013A-56LFC 56-pin qfn cy7c68013-100ac cy7c68013a-100ac 100-pin tqfp cy7c68013-128ac cy7c68013a-128ac 128-pin tqfp table 3-10. cy7c68013a and cy7c68015a pin differences cy7c68013a cy7c68015a ifclk pe0/t0out clkout pe1/t1out
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 20 of 63 4.0 pin assignments figure 4-1 identifies all signals for the four package types. the following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of si gnals are available in the 128-, 100-, and 56-pin packages. the signals on the left edge of the 56-pin package in figure 4-1 are common to all versions in the fx2lp family with the noted differences between the cy7c68013a and the cy7c68015a. thre e modes are available in all package versions: port, gpif master, and slave fifo. these modes define the signals on the right edge of the diagram. the 8051 selects the interface mode using the ifconfig[1:0] register bits. port mode is the pow er-on default configuration. the 100-pin package adds functionality to t he 56-pin package by adding these pins: ? portc or alternate gpifadr[7:0] address signals ? porte or alternate gpifadr[8] address signal and seven additional 8051 signals ? three gpif control signals ? four gpif ready signals ? nine 8051 signals (two usarts, th ree timer inputs, int4,and int5#) ? bkpt, rd#, wr#. the 128-pin package adds the 8051 address and data buses plus cont rol signals. note that two of the required signals, rd# and wr#, are present in the 100-pin version. in the 100-pin and 12 8-pin versions, an 8051 control bit can be set to pulse the rd# and wr# pins when the 8051 reads from/writes to portc.
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 21 of 63 rdy0 rdy1 ctl0 ctl1 ctl2 int0#/pa0 int1#/pa1 pa2 wu2/pa3 pa4 pa5 pa6 pa7 56 bkpt portc7/gpifadr7 portc6/gpifadr6 portc5/gpifadr5 portc4/gpifadr4 portc3/gpifadr3 portc2/gpifadr2 portc1/gpifadr1 portc0/gpifadr0 pe7/gpifadr8 pe6/t2ex pe5/int6 pe4/rxd1out pe3/rxd0out pe2/t2out pe1/t1out pe0/t0out rxd0 txd0 rxd1 txd1 int4 int5# t2 t1 t0 100 d7 d6 d5 d4 d3 d2 d1 d0 ea 128 rd# wr# cs# oe# psen# a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 xtalin xtalout reset# wakeup# scl sda **pe0/t0out **pe1/t1out ifclk clkout dplus dminus fd[15] fd[14] fd[13] fd[12] fd[11] fd[10] fd[9] fd[8] fd[7] fd[6] fd[5] fd[4] fd[3] fd[2] fd[1] fd[0] slrd slwr flaga flagb flagc int0#/ pa0 int1#/ pa1 sloe wu2/pa3 fifoadr0 fifoadr1 pktend pa7/flagd/slcs# fd[15] fd[14] fd[13] fd[12] fd[11] fd[10] fd[9] fd[8] fd[7] fd[6] fd[5] fd[4] fd[3] fd[2] fd[1] fd[0] pd7 pd6 pd5 pd4 pd3 pd2 pd1 pd0 pb7 pb6 pb5 pb4 pb3 pb2 pb1 pb0 int0#/pa0 int1#/pa1 pa2 wu2/pa3 pa4 pa5 pa6 pa7 port gpif master slave fifo ctl3 ctl4 ctl5 rdy2 rdy3 rdy4 rdy5 figure 4-1. signals ** pinout for cy7c68015a only **pe0 replaces ifclk on cy7c68015a & pe1 replaces clkout
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 22 of 63 clkout vcc gnd rdy0/*slrd rdy1/*slwr rdy2 rdy3 rdy4 rdy5 avcc xtalout xtalin agnd nc nc nc avcc dplus dminus agnd a11 a12 a13 a14 a15 vcc gnd int4 t0 t1 t2 *ifclk reserved bkpt ea scl sda oe# pd0/fd8 *wakeup vcc reset# ctl5 a3 a2 a1 a0 gnd pa7/*flagd/slcs# pa6/*pktend pa5/fifoadr1 pa4/fifoadr0 d7 d6 d5 pa3/*wu2 pa2/*sloe pa1/int1# pa0/int0# vcc gnd pc7/gpifadr7 pc6/gpifadr6 pc5/gpifadr5 pc4/gpifadr4 pc3/gpifadr3 pc2/gpifadr2 pc1/gpifadr1 pc0/gpifadr0 ctl2/*flagc ctl1/*flagb ctl0/*flaga vcc ctl4 ctl3 gnd pd1/fd9 pd2/fd10 pd3/fd11 int5# vcc pe0/t0out pe1/t1out pe2/t2out pe3/rxd0out pe4/rxd1out pe5/int6 pe6/t2ex pe7/gpifadr8 gnd a4 a5 a6 a7 pd4/fd12 pd5/fd13 pd6/fd14 pd7/fd15 gnd a8 a9 a10 cy7c68013a 128-pin tqfp 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 vcc d4 d3 d2 d1 d0 gnd pb7/fd7 pb6/fd6 pb5/fd5 pb4/fd4 rxd1 txd1 rxd0 txd0 gnd vcc pb3/fd3 pb2/fd2 pb1/fd1 pb0/fd0 vcc cs# wr# rd# psen# figure 4-2. cy7c68013a 1 28-pin tqfp pin assignment * denotes programmable polarity
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 23 of 63 pd0/fd8 *wakeup vcc reset# ctl5 gnd pa7/*flagd/slcs# pa6/*pktend pa5/fifoadr1 pa4/fifoadr0 pa3/*wu2 pa2/*sloe pa1/int1# pa0/int0# vcc gnd pc7/gpifadr7 pc6/gpifadr6 pc5/gpifadr5 pc4/gpifadr4 pc3/gpifadr3 pc2/gpifadr2 pc1/gpifadr1 pc0/gpifadr0 ctl2/*flagc ctl1/*flagb ctl0/*flaga vcc ctl4 ctl3 pd1/fd9 pd2/fd10 pd3/fd11 int5# vcc pe0/t0out pe1/t1out pe2/t2out pe3/rxd0out pe4/rxd1out pe5/int6 pe6/t2ex pe7/gpifadr8 gnd pd4/fd12 pd5/fd13 pd6/fd14 pd7/fd15 gnd clkout cy7c68013a 100-pin tqfp gnd vcc gnd pb7/fd7 pb6/fd6 pb5/fd5 pb4/fd4 rxd1 txd1 rxd0 txd0 gnd vcc pb3/fd3 pb2/fd2 pb1/fd1 pb0/fd0 vcc wr# rd# 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 vcc gnd rdy0/*slrd rdy1/*slwr rdy2 rdy3 rdy4 rdy5 avcc xtalout xtalin agnd nc nc nc avcc dplus dminus agnd vcc gnd int4 t0 t1 t2 *ifclk reserved bkpt scl sda 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 figure 4-3. cy7c68013a 100-pin tqfp pin assignment * denotes programmable polarity
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 24 of 63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 pd5/fd13 pd6/fd14 pd7/fd15 gnd clkout/**pe1/t1out vcc gnd rdy0/*slrd rdy1/*slwr avcc xtalout xtalin agnd avcc dplus dminus agnd vcc gnd *ifclk/**pe0/t0out reserved scl sda vcc pb0/fd0 pb1/fd1 pb2/fd2 pb3/fd3 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 pd4/fd12 pd3/fd11 pd2/fd10 pd1/fd9 pd0/fd8 *wakeup vcc reset# gnd pa7/*flagd/slcs# pa6/pktend pa5/fifoadr1 pa4/fifoadr0 pa3/*wu2 pa2/*sloe pa1/int1# pa0/int0# vcc ctl2/*flagc ctl1/*flagb ctl0/*flaga gnd vcc gnd pb7/fd7 pb6/fd6 pb5/fd5 pb4/fd4 cy7c68013a/15a 56-pin ssop figure 4-4. cy7c68013a/15a 56-pin ssop pin assignment * denotes programmable polarity ** denotes cy7c68015a pinout
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 25 of 63 28 27 26 25 24 23 22 21 20 19 18 17 16 15 43 44 45 46 47 48 49 50 51 52 53 54 55 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 41 40 39 38 37 36 35 34 33 32 31 30 29 figure 4-5. cy7c68013a/15a 56-pin qfn pin assignment * denotes programmable polarity reset# gnd pa7/*flagd/slcs# pa6/*pktend pa5/fifoadr1 pa4/fifoadr0 pa3/*wu2 pa2/*sloe pa1/int1# pa0/int0# vcc ctl2/*flagc ctl1/*flagb ctl0/*flaga rdy0/*slrd rdy1/*slwr avcc xtalout xtalin agnd avcc dplus dminus agnd vcc gnd *ifclk/**pe0/t0out reserved vcc *wakeup pd0/fd8 pd1/fd9 pd2/fd10 pd3/fd11 pd4/fd12 pd5/fd13 pd6/fd14 pd7/fd15 gnd clkout/**pe1/t1out vcc gnd gnd vcc gnd pb7/fd7 pb6/fd6 pb5/fd5 pb4/fd4 pb3/fd3 pb2/fd2 pb1/fd1 pb0/fd0 vcc sda scl cy7c68013a/15a 56-pin qfn ** denotes cy7c68015a pinout
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 26 of 63 4.1 cy7c68013a/15a pin descriptions table 4-1. fx2lp pin descriptions [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description 10 9 10 3 avcc power n/a analog vcc . connect this pin to 3.3v power source. this signal provides power to the analog section of the chip. 17 16 14 7 avcc power n/a analog vcc . connect this pin to 3.3v power source. this signal provides power to the analog section of the chip. 13 12 13 6 agnd ground n/a analog ground . connect to ground with as short a path as possible. 20 19 17 10 agnd ground n/a analog ground . connect to ground with as short a path as possible. 19 18 16 9 dminus i/o/z z usb d? signal . connect to the usb d? signal. 18 17 15 8 dplus i/o/z z usb d+ signal . connect to the usb d+ signal. 94 a0 output l 8051 address bus . this bus is driven at all times. when the 8051 is addressing internal ram it reflects the internal address. 95 a1 output l 96 a2 output l 97 a3 output l 117 a4 output l 118 a5 output l 119 a6 output l 120 a7 output l 126 a8 output l 127 a9 output l 128 a10 output l 21 a11 output l 22 a12 output l 23 a13 output l 24 a14 output l 25 a15 output l 59 d0 i/o/z z 8051 data bus . this bidirectional bus is high- impedance when inactive, input for bus reads, and output for bus writes. the data bus is used for external 8051 program and data memory. the data bus is active only for external bus accesses, and is driven low in suspend. 60 d1 i/o/z z 61 d2 i/o/z z 62 d3 i/o/z z 63 d4 i/o/z z 86 d5 i/o/z z 87 d6 i/o/z z 88 d7 i/o/z z 39 psen# output h program store enable . this active-low signal indicates an 8051 code fetch from external memory. it is active for program memory fetches from 0x4000?0xffff when the ea pin is low, or from 0x0000?0xffff when the ea pin is high. note: 10. unused inputs should not be left floating. tie either high or low as appropriate. outputs should only be pulled up or down t o ensure signals at power-up and in standby. note also that no pins should be driven while the device is powered down.
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 27 of 63 34 28 bkpt output l breakpoint . this pin goes active (high) when the 8051 address bus matches the bpaddrh/l registers and breakpoints are enabled in the breakpt register (bpen = 1). if the bppulse bit in the breakpt register is high, this signal pulses high for eight 12- /24-/48-mhz clocks. if the bppulse bit is low, the signal remains high until the 8051 clears the break bit (by writing 1 to it) in the breakpt register. 99 77 49 42 reset# input n/a active low reset . resets the entire chip. see section 3.9 ?reset and wakeup? on page 11 for more details. 35 ea input n/a external access . this pin determines where the 8051 fetches code between addresses 0x0000 and 0x3fff. if ea = 0 the 8051 fetches this code from its internal ram. if ea = 1 the 8051 fetches this code from external memory. 12 11 12 5 xtalin input n/a crystal input . connect this signal to a 24-mhz parallel-resonant, fundamental mode crystal and load capacitor to gnd. it is also correct to drive xtalin with an external 24 mhz square wave derived from another clock source. when driving from an external source, the driving signal should be a 3.3v square wave. 11 10 11 4 xtalout output n/a crystal output . connect this signal to a 24-mhz parallel-resonant, fundamental mode crystal and load capacitor to gnd. if an external clock is used to drive xtalin, leave this pin open. 1 100 5 54 clkout on cy7c68013a ------------------ pe1 or t1out on cy7c68015a o/z ----------- i/o/z 12 mhz ---------- i (pe1) clkout: 12-, 24- or 48-mhz clock, phase locked to the 24-mhz input clock. the 8051 defaults to 12-mhz operation. the 8051 may three-state this output by setting cpucs.1 = 1. ----------------------------------------------------------------------- ---------- multiplexed pin whose func tion is selected by the portecfg.0 bit. pe1 is a bidirectional i/o port pin. t1out is an active-high signal from 8051 timer- counter1. t1out outputs a high level for one clkout clock cycle when timer1 overflows. if timer1 is operated in mode 3 (two separate timer/counters), t1out is active when the low byte timer/counter overflows. port a 82 67 40 33 pa0 or int0# i/o/z i (pa0) multiplexed pin whose function is selected by portacfg.0 pa0 is a bidirectional io port pin. int0# is the active-low 8051 int0 interrupt input signal, which is either edge tr iggered (it0 = 1) or level triggered (it0 = 0). 83 68 41 34 pa1 or int1# i/o/z i (pa1) multiplexed pin whose function is selected by: portacfg.1 pa1 is a bidirectional io port pin. int1# is the active-low 8051 int1 interrupt input signal, which is either edge tr iggered (it1 = 1) or level triggered (it1 = 0). table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 28 of 63 84 69 42 35 pa2 or sloe or i/o/z i (pa2) multiplexed pin whose function is selected by two bits: ifconfig[1:0]. pa2 is a bidirectional io port pin. sloe is an input-only outp ut enable with program- mable polarity (fifopinpolar.4) for the slave fifos connected to fd[7..0] or fd[15..0]. 85 70 43 36 pa3 or wu2 i/o/z i (pa3) multiplexed pin whose function is selected by: wakeup.7 and oea.3 pa3 is a bidirectional i/o port pin. wu2 is an alternate source for usb wakeup, enabled by wu2en bit (wakeup.1) and polarity set by wu2pol (wakeup.4). if the 8051 is in suspend and wu2en = 1, a transition on this pin starts up the oscil- lator and interrupts the 8051 to allow it to exit the suspend mode. asserting this pin inhibits the chip from suspending, if wu2en=1. 89 71 44 37 pa4 or fifoadr0 i/o/z i (pa4) multiplexed pin whose function is selected by: ifconfig[1..0]. pa4 is a bidirectional i/o port pin. fifoadr0 is an input-only address select for the slave fifos connected to fd[7..0] or fd[15..0]. 90 72 45 38 pa5 or fifoadr1 i/o/z i (pa5) multiplexed pin whose function is selected by: ifconfig[1..0]. pa5 is a bidirectional i/o port pin. fifoadr1 is an input-only address select for the slave fifos connected to fd[7..0] or fd[15..0]. 91 73 46 39 pa6 or pktend i/o/z i (pa6) multiplexed pin whose func tion is selected by the ifconfig[1:0] bits. pa6 is a bidirectional i/o port pin. pktend is an input used to commit the fifo packet data to the endpoint and whose polarity is program- mable via fifopinpolar.5. 92 74 47 40 pa7 or flagd or slcs# i/o/z i (pa7) multiplexed pin whose func tion is selected by the ifconfig[1:0] and portacfg.7 bits. pa7 is a bidirectional i/o port pin. flagd is a programmable slav e-fifo output status flag signal. slcs# gates all other slave fifo enable/strobes port b 44 34 25 18 pb0 or fd[0] i/o/z i (pb0) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb0 is a bidirectional i/o port pin. fd[0] is the bidirectional fifo/gpif data bus. 45 35 26 19 pb1 or fd[1] i/o/z i (pb1) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb1 is a bidirectional i/o port pin. fd[1] is the bidirectional fifo/gpif data bus. 46 36 27 20 pb2 or fd[2] i/o/z i (pb2) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb2 is a bidirectional i/o port pin. fd[2] is the bidirectional fifo/gpif data bus. 47 37 28 21 pb3 or fd[3] i/o/z i (pb3) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb3 is a bidirectional i/o port pin. fd[3] is the bidirectional fifo/gpif data bus. table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 29 of 63 54 44 29 22 pb4 or fd[4] i/o/z i (pb4) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb4 is a bidirectional i/o port pin. fd[4] is the bidirectional fifo/gpif data bus. 55 45 30 23 pb5 or fd[5] i/o/z i (pb5) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb5 is a bidirectional i/o port pin. fd[5] is the bidirectional fifo/gpif data bus. 56 46 31 24 pb6 or fd[6] i/o/z i (pb6) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb6 is a bidirectional i/o port pin. fd[6] is the bidirectional fifo/gpif data bus. 57 47 32 25 pb7 or fd[7] i/o/z i (pb7) multiplexed pin whose func tion is selected by the following bits: ifconfig[1..0]. pb7 is a bidirectional i/o port pin. fd[7] is the bidirectional fifo/gpif data bus. port c 72 57 pc0 or gpifadr0 i/o/z i (pc0) multiplexed pin whose function is selected by portccfg.0 pc0 is a bidirectional i/o port pin. gpifadr0 is a gpif address output pin. 73 58 pc1 or gpifadr1 i/o/z i (pc1) multiplexed pin whose function is selected by portccfg.1 pc1 is a bidirectional i/o port pin. gpifadr1 is a gpif address output pin. 74 59 pc2 or gpifadr2 i/o/z i (pc2) multiplexed pin whose function is selected by portccfg.2 pc2 is a bidirectional i/o port pin. gpifadr2 is a gpif address output pin. 75 60 pc3 or gpifadr3 i/o/z i (pc3) multiplexed pin whose function is selected by portccfg.3 pc3 is a bidirectional i/o port pin. gpifadr3 is a gpif address output pin. 76 61 pc4 or gpifadr4 i/o/z i (pc4) multiplexed pin whose function is selected by portccfg.4 pc4 is a bidirectional i/o port pin. gpifadr4 is a gpif address output pin. 77 62 pc5 or gpifadr5 i/o/z i (pc5) multiplexed pin whose function is selected by portccfg.5 pc5 is a bidirectional i/o port pin. gpifadr5 is a gpif address output pin. 78 63 pc6 or gpifadr6 i/o/z i (pc6) multiplexed pin whose function is selected by portccfg.6 pc6 is a bidirectional i/o port pin. gpifadr6 is a gpif address output pin. 79 64 pc7 or gpifadr7 i/o/z i (pc7) multiplexed pin whose function is selected by portccfg.7 pc7 is a bidirectional i/o port pin. gpifadr7 is a gpif address output pin. port d 102 80 52 45 pd0 or fd[8] i/o/z i (pd0) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[8] is the bidirectional fifo/gpif data bus. table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 30 of 63 103 81 53 46 pd1 or fd[9] i/o/z i (pd1) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[9] is the bidirectional fifo/gpif data bus. 104 82 54 47 pd2 or fd[10] i/o/z i (pd2) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[10] is the bidirectional fifo/gpif data bus. 105 83 55 48 pd3 or fd[11] i/o/z i (pd3) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[11] is the bidirectiona l fifo/gpif data bus. 121 95 56 49 pd4 or fd[12] i/o/z i (pd4) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[12] is the bidirectional fifo/gpif data bus. 122 96 1 50 pd5 or fd[13] i/o/z i (pd5) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[13] is the bidirectional fifo/gpif data bus. 123 97 2 51 pd6 or fd[14] i/o/z i (pd6) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[14] is the bidirectional fifo/gpif data bus. 124 98 3 52 pd7 or fd[15] i/o/z i (pd7) multiplexed pin whose func tion is selected by the ifconfig[1..0] and epxfifocfg.0 (wordwide) bits. fd[15] is the bidirectional fifo/gpif data bus. port e 108 86 pe0 or t0out i/o/z i (pe0) multiplexed pin whose func tion is selected by the portecfg.0 bit. pe0 is a bidirectional i/o port pin. t0out is an active-high signal from 8051 timer- counter0. t0out outputs a high level for one clkout clock cycle when timer0 overflows. if timer0 is operated in mode 3 (two separate timer/counters), t0out is active when the low byte timer/counter overflows. 109 87 pe1 or t1out i/o/z i (pe1) multiplexed pin whose func tion is selected by the portecfg.1 bit. pe1 is a bidirectional i/o port pin. t1out is an active-high signal from 8051 timer- counter1. t1out outputs a high level for one clkout clock cycle when timer1 overflows. if timer1 is operated in mode 3 (two separate timer/counters), t1out is active when the low byte timer/counter overflows. 110 88 pe2 or t2out i/o/z i (pe2) multiplexed pin whose func tion is selected by the portecfg.2 bit. pe2 is a bidirectional i/o port pin. t2out is the active-high output signal from 8051 timer2. t2out is active (h igh) for one clock cycle when timer/counter 2 overflows. 111 89 pe3 or rxd0out i/o/z i (pe3) multiplexed pin whose func tion is selected by the portecfg.3 bit. pe3 is a bidirectional i/o port pin. rxd0out is an active-high signal from 8051 uart0. if rxd0out is selected and uart0 is in mode 0, this pin provides the output data for uart0 only when it is in sync m ode. otherwise it is a 1. table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 31 of 63 112 90 pe4 or rxd1out i/o/z i (pe4) multiplexed pin whose func tion is selected by the portecfg.4 bit. pe4 is a bidirectional i/o port pin. rxd1out is an active-high output from 8051 uart1. when rxd1out is selected and uart1 is in mode 0, this pin provides the output data for uart1 only when it is in sync mode. in modes 1, 2, and 3, this pin is high. 113 91 pe5 or int6 i/o/z i (pe5) multiplexed pin whose func tion is selected by the portecfg.5 bit. pe5 is a bidirectional i/o port pin. int6 is the 8051 int6 interrupt request input signal. the int6 pin is edge-sensitive, active high. 114 92 pe6 or t2ex i/o/z i (pe6) multiplexed pin whose func tion is selected by the portecfg.6 bit. pe6 is a bidirectional i/o port pin. t2ex is an active-high input signal to the 8051 timer2. t2ex reloads timer 2 on its falling edge. t2ex is active only if the exen2 bit is set in t2con. 115 93 pe7 or gpifadr8 i/o/z i (pe7) multiplexed pin whose func tion is selected by the portecfg.7 bit. pe7 is a bidirectional i/o port pin. gpifadr8 is a gpif address output pin. 4381rdy0 or slrd input n/a multiplexed pin whose function is selected by the following bits: ifconfig[1..0]. rdy0 is a gpif input signal. slrd is the input-only read strobe with programmable polarity (fifopinpolar.3) for the slave fifos connected to fd[7..0] or fd[15..0]. 5492rdy1 or slwr input n/a multiplexed pin whose function is selected by the following bits: ifconfig[1..0]. rdy1 is a gpif input signal. slwr is the input-only write strobe with program- mable polarity (fifopinpolar.2) for the slave fifos connected to fd[7..0] or fd[15..0]. 6 5 rdy2 input n/a rdy2 is a gpif input signal. 7 6 rdy3 input n/a rdy3 is a gpif input signal. 8 7 rdy4 input n/a rdy4 is a gpif input signal. 9 8 rdy5 input n/a rdy5 is a gpif input signal. 69 54 36 29 ctl0 or flaga o/z h multiplexed pin whose f unction is selected by the following bits: ifconfig[1..0]. ctl0 is a gpif control output. flaga is a programmable slav e-fifo output status flag signal. defaults to programmable fo r the fifo selected by the fifoadr[1:0] pins. table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 32 of 63 70 55 37 30 ctl1 or flagb o/z h multiplexed pin whose f unction is selected by the following bits: ifconfig[1..0]. ctl1 is a gpif control output. flagb is a programmable slav e-fifo output status flag signal. defaults to full for the fifo selected by the fifoadr[1:0] pins. 71 56 38 31 ctl2 or flagc o/z h multiplexed pin whose f unction is selected by the following bits: ifconfig[1..0]. ctl2 is a gpif control output. flagc is a programmable slav e-fifo output status flag signal. defaults to empty for the fifo selected by the fifoadr[1:0] pins. 66 51 ctl3 o/z h ctl3 is a gpif control output. 67 52 ctl4 output h ctl4 is a gpif control output. 98 76 ctl5 output h ctl5 is a gpif control output. 32 26 20 13 ifclk on cy7c68013a ------------------ pe0 or t0out on cy7c68015a i/o/z ----------- i/o/z z ---------- i (pe0) interface clock, used for synchronously clocking data into or out of the slave fifos. ifclk also serves as a timing reference for all slave fifo control signals and gpif. when internal clocking is used (ifconfig.7 = 1) the ifclk pin can be configured to output 30/48 mhz by bits ifconfig.5 and ifconfig.6. ifclk may be inverted, whether inter- nally or externally sourced, by setting the bit ifconfig.4 =1. ----------------------------------------------------------------------- ---------- multiplexed pin whose func tion is selected by the portecfg.0 bit. pe0 is a bidirectional i/o port pin. t0out is an active-high signal from 8051 timer- counter0. t0out outputs a high level for one clkout clock cycle when timer0 overflows. if timer0 is operated in mode 3 (two separate timer/counters), t0out is active when the low byte timer/counter overflows. 28 22 int4 input n/a int4 is the 8051 int4 interrupt request input signal. the int4 pin is edge-sensitive, active high. 106 84 int5# input n/a int5# is the 8051 int5 interrupt request input signal. the int5 pin is edge-sensitive, active low. 31 25 t2 input n/a t2 is the active-high t2 input signal to 8051 timer2, which provides the input to timer2 when c/t2 = 1. when c/t2 = 0, timer2 does not use this pin. 30 24 t1 input n/a t1 is the active-high t1 signal for 8051 timer1, which provides the input to timer1 when c/t1 is 1. when c/t1 is 0, timer1 does not use this bit. 29 23 t0 input n/a t0 is the active-high t0 signal for 8051 timer0, which provides the input to timer0 when c/t0 is 1. when c/t0 is 0, timer0 does not use this bit. 53 43 rxd1 input n/a rxd1 is an active-high input signal for 8051 uart1, which provides data to the uart in all modes. table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 33 of 63 52 42 txd1 output h txd1 is an active-high output pin from 8051 uart1, which provides the output clock in sync mode, and the output data in async mode. 51 41 rxd0 input n/a rxd0 is the active-high rxd0 input to 8051 uart0, which provides data to the uart in all modes. 50 40 txd0 output h txd0 is the active-high txd0 output from 8051 uart0, which provides the output clock in sync mode, and the output data in async mode. 42 cs# output h cs# is the active-low chip select for external memory. 41 32 wr# output h wr# is the active-low write strobe output for external memory. 40 31 rd# output h rd# is the active-low read st robe output for external memory. 38 oe# output h oe# is the active-low output enable for external memory. 33 27 21 14 reserved input n/a reserved . connect to ground. 101 79 51 44 wakeup input n/a usb wakeup . if the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. holding wakeup asserted inhibits the ez-usb ? chip from suspending. this pin has programmable polarity (wakeup.4). 36 29 22 15 scl od z clock for the i 2 c interface. connect to vcc with a 2.2k resistor, even if no i 2 c peripheral is attached. 37 30 23 16 sda od z data for i 2 c-compatible interface . connect to vcc with a 2.2k resistor, even if no i 2 c-compatible peripheral is attached . 2 1 6 55 vcc power n/a vcc . connect to 3.3v power source. 26 20 18 11 vcc power n/a vcc . connect to 3.3v power source. 43 33 24 17 vcc power n/a vcc . connect to 3.3v power source. 48 38 vcc power n/a vcc . connect to 3.3v power source. 64 49 34 27 vcc power n/a vcc . connect to 3.3v power source. 68 53 vcc power n/a vcc . connect to 3.3v power source. 81 66 39 32 vcc power n/a vcc . connect to 3.3v power source. 100 78 50 43 vcc power n/a vcc . connect to 3.3v power source. 107 85 vcc power n/a vcc . connect to 3.3v power source. 3 2 7 56 gnd ground n/a ground . 27 21 19 12 gnd ground n/a ground . 49 39 gnd ground n/a ground . 58 48 33 26 gnd ground n/a ground . 65 50 35 28 gnd ground n/a ground . 80 65 gnd ground n/a ground . 93 75 48 41 gnd ground n/a ground . 116 94 gnd ground n/a ground . table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 34 of 63 125 99 4 53 gnd ground n/a ground . 14 13 nc n/a n/a no connect . this pin must be left open. 15 14 nc n/a n/a no connect . this pin must be left open. 16 15 nc n/a n/a no-connect . this pin must be left open. table 4-1. fx2lp pin descriptions (continued) [10] 128 tqfp 100 tqfp 56 ssop 56 qfn name type default description
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 35 of 63 5.0 register summary fx2lp register bit definitions are described in the fx2lp trm in greater detail. table 5-1. fx2lp register summary hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access gpif waveform memories e400 128 wavedata gpif waveform descriptor 0, 1, 2, 3 data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw e480 128 reserved general configuration e600 1 cpucs cpu control & status 0 0 portcstb clkspd1 clkspd0 clkinv clkoe 8051res 00000010 rrbbbbbr e601 1 ifconfig interface configuration (ports, gpif, slave fifos) ifclksrc 3048mhz ifclkoe ifclkpol async gstate ifcfg1 ifcfg0 10000000 rw e602 1 pinflagsab [11] slave fifo flaga and flagb pin configuration flagb3 flagb2 flagb1 flagb0 flaga3 flaga2 flaga1 flaga0 00000000 rw e603 1 pinflagscd [11] slave fifo flagc and flagd pin configuration flagd3 flagd2 flagd1 flagd0 flagc3 flagc2 flagc1 flagc0 00000000 rw e604 1 fiforeset [11] restore fifos to default state nakall 0 0 0 ep3 ep2 ep1 ep0 xxxxxxxx w e605 1 breakpt breakpoint control 0 0 0 0 break bppulse bpen 0 00000000 rrrrbbbr e606 1 bpaddrh breakpoint address h a15 a14 a13 a12 a11 a10 a9 a8 xxxxxxxx rw e607 1 bpaddrl breakpoint address l a7 a6 a5 a4 a3 a2 a1 a0 xxxxxxxx rw e608 1 uart230 230 kbaud internally generated ref. clock 0 0 0 0 0 0 230uart1 230uart0 00000000 rrrrrrbb e609 1 fifopinpolar [11] slave fifo interface pins polarity 0 0 pktend sloe slrd slwr ef ff 00000000 rrbbbbbb e60a 1 revid chip revision rv7 rv6 rv5 rv4 rv3 rv2 rv1 rv0 reva 00000001 r e60b 1 revctl [11] chip revision control 0 0 0 0 0 0 dyn_out enh_pkt 00000000 rrrrrrbb udma e60c 1 gpifholdamount mstb hold time (for udma) 0 0 0 0 0 0 holdtime1 holdtime0 00000000 rrrrrrbb 3 reserved endpoint configuration e610 1 ep1outcfg endpoint 1-out configuration valid 0 type1 type0 0 0 0 0 10100000 brbbrrrr e611 1 ep1incfg endpoint 1-in configuration valid 0 type1 type0 0 0 0 0 10100000 brbbrrrr e612 1 ep2cfg endpoint 2 configuration valid dir type1 type0 size 0 buf1 buf0 10100010 bbbbbrbb e613 1 ep4cfg endpoint 4 configuration valid dir type1 type0 0 0 0 0 10100000 bbbbrrrr e614 1 ep6cfg endpoint 6 configuration valid dir type1 type0 size 0 buf1 buf0 11100010 bbbbbrbb e615 1 ep8cfg endpoint 8 configuration valid dir type1 type0 0 0 0 0 11100000 bbbbrrrr 2 reserved e618 1 ep2fifocfg [11] endpoint 2 / slave fifo configuration 0 infm1 oep1 autoout autoin zerolenin 0 wordwide 00000101 rbbbbbrb e619 1 ep4fifocfg [11] endpoint 4 / slave fifo configuration 0 infm1 oep1 autoout autoin zerolenin 0 wordwide 00000101 rbbbbbrb e61a 1 ep6fifocfg [11] endpoint 6 / slave fifo configuration 0 infm1 oep1 autoout autoin zerolenin 0 wordwide 00000101 rbbbbbrb e61b 1 ep8fifocfg [11] endpoint 8 / slave fifo configuration 0 infm1 oep1 autoout autoin zerolenin 0 wordwide 00000101 rbbbbbrb e61c 4 reserved e620 1 ep2autoinlenh [11 ] endpoint 2 autoin packet length h 0 0 0 0 0 pl10 pl9 pl8 00000010 rrrrrbbb e621 1 ep2autoinlenl [11] endpoint 2 autoin packet length l pl7 pl6 pl5 pl4 pl3 pl2 pl1 pl0 00000000 rw e622 1 ep4autoinlenh [11 ] endpoint 4 autoin packet length h 0 0 0 0 0 0 pl9 pl8 00000010 rrrrrrbb e623 1 ep4autoinlenl [11] endpoint 4 autoin packet length l pl7 pl6 pl5 pl4 pl3 pl2 pl1 pl0 00000000 rw e624 1 ep6autoinlenh [11 ] endpoint 6 autoin packet length h 0 0 0 0 0 pl10 pl9 pl8 00000010 rrrrrbbb e625 1 ep6autoinlenl [11] endpoint 6 autoin packet length l pl7 pl6 pl5 pl4 pl3 pl2 pl1 pl0 00000000 rw e626 1 ep8autoinlenh [11 ] endpoint 8 autoin packet length h 0 0 0 0 0 0 pl9 pl8 00000010 rrrrrrbb e627 1 ep8autoinlenl [11] endpoint 8 autoin packet length l pl7 pl6 pl5 pl4 pl3 pl2 pl1 pl0 00000000 rw e628 1 ecccfg ecc configuration 0 0 0 0 0 0 0 eccm 00000000 rrrrrrrb e629 1 eccreset ecc reset x x x x x x x x 00000000 w e62a 1 ecc1b0 ecc1 byte 0 address line15 line14 line13 line12 line11 line10 line9 line8 00000000 r e62b 1 ecc1b1 ecc1 byte 1 address line7 line6 line5 line4 line3 line2 line1 line0 00000000 r e62c 1 ecc1b2 ecc1 byte 2 address col5 col4 col3 col2 col1 col0 line17 line16 00000000 r e62d 1 ecc2b0 ecc2 byte 0 address line15 line14 line13 line12 line11 line10 line9 line8 00000000 r e62e 1 ecc2b1 ecc2 byte 1 address line7 line6 line5 line4 line3 line2 line1 line0 00000000 r note: 11. read and writes to these register may require synchronization delay, see technical reference manual for ?synchronization del ay.?
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 36 of 63 e62f 1 ecc2b2 ecc2 byte 2 address col5 col4 col3 col2 col1 col0 0 0 00000000 r e630 h.s. 1 ep2fifopfh [11] endpoint 2 / slave fifo programmable flag h decis pktstat in:pkts[2] out:pfc12 in:pkts[1] out:pfc11 in:pkts[0] out:pfc10 0 pfc9 pfc8 10001000 bbbbbrbb e630 f. s . 1 ep2fifopfh [11] endpoint 2 / slave fifo programmable flag h decis pktstat out:pfc12 out:pfc11 out:pfc10 0 pfc9 in:pkts[2] out:pfc8 10001000 bbbbbrbb e631 h.s. 1 ep2fifopfl [11] endpoint 2 / slave fifo programmable flag l pfc7 pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e631 f. s 1 ep2fifopfl [11] endpoint 2 / slave fifo programmable flag l in:pkts[1] out:pfc7 in:pkts[0] out:pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e632 h.s. 1 ep4fifopfh [11] endpoint 4 / slave fifo programmable flag h decis pktstat 0 in: pkts[1] out:pfc10 in: pkts[0] out:pfc9 0 0 pfc8 10001000 bbrbbrrb e632 f. s 1 ep4fifopfh [11] endpoint 4 / slave fifo programmable flag h decis pktstat 0 out:pfc10 out:pfc9 0 0 pfc8 10001000 bbrbbrrb e633 h.s. 1 ep4fifopfl [11] endpoint 4 / slave fifo programmable flag l pfc7 pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e633 f. s 1 ep4fifopfl [11] endpoint 4 / slave fifo programmable flag l in: pkts[1] out:pfc7 in: pkts[0] out:pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e634 h.s. 1 ep6fifopfh [11] endpoint 6 / slave fifo programmable flag h decis pktstat in:pkts[2] out:pfc12 in:pkts[1] out:pfc11 in:pkts[0] out:pfc10 0 pfc9 pfc8 00001000 bbbbbrbb e634 f. s 1 ep6fifopfh [11] endpoint 6 / slave fifo programmable flag h decis pktstat out:pfc12 out:pfc11 out:pfc10 0 pfc9 in:pkts[2] out:pfc8 00001000 bbbbbrbb e635 h.s. 1 ep6fifopfl [11] endpoint 6 / slave fifo programmable flag l pfc7 pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e635 f. s 1 ep6fifopfl [11] endpoint 6 / slave fifo programmable flag l in:pkts[1] out:pfc7 in:pkts[0] out:pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e636 h.s. 1 ep8fifopfh [11] endpoint 8 / slave fifo programmable flag h decis pktstat 0 in: pkts[1] out:pfc10 in: pkts[0] out:pfc9 0 0 pfc8 00001000 bbrbbrrb e636 f. s 1 ep8fifopfh [11] endpoint 8 / slave fifo programmable flag h decis pktstat 0 out:pfc10 out:pfc9 0 0 pfc8 00001000 bbrbbrrb e637 h.s. 1 ep8fifopfl [11] endpoint 8 / slave fifo programmable flag l pfc7 pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw e637 f. s 1 ep8fifopfl [11] endpoint 8 / slave fifo programmable flag l in: pkts[1] out:pfc7 in: pkts[0] out:pfc6 pfc5 pfc4 pfc3 pfc2 pfc1 pfc0 00000000 rw 8 reserved e640 1 ep2isoinpkts ep2 (if iso) in packets per frame (1-3) aadj 0 0 0 0 0 inppf1 inppf0 00000001 brrrrrbb e641 1 ep4isoinpkts ep4 (if iso) in packets per frame (1-3) aadj 0 0 0 0 0 inppf1 inppf0 00000001 brrrrrrr e642 1 ep6isoinpkts ep6 (if iso) in packets per frame (1-3) aadj 0 0 0 0 0 inppf1 inppf0 00000001 brrrrrbb e643 1 ep8isoinpkts ep8 (if iso) in packets per frame (1-3) aadj 0 0 0 0 0 inppf1 inppf0 00000001 brrrrrrr e644 4 reserved e648 1 inpktend [11] force in packet end skip 0 0 0 ep3 ep2 ep1 ep0 xxxxxxxx w e649 7 outpktend [11] force out packet end skip 0 0 0 ep3 ep2 ep1 ep0 xxxxxxxx w interrupts e650 1 ep2fifoie [11] endpoint 2 slave fifo flag interrupt enable 0 0 0 0 edgepf pf ef ff 00000000 rw e651 1 ep2fifoirq [11,12] endpoint 2 slave fifo flag interrupt request 0 0 0 0 0 pf ef ff 00000000 rrrrrbbb e652 1 ep4fifoie [11] endpoint 4 slave fifo flag interrupt enable 0 0 0 0 edgepf pf ef ff 00000000 rw e653 1 ep4fifoirq [11,12] endpoint 4 slave fifo flag interrupt request 0 0 0 0 0 pf ef ff 00000000 rrrrrbbb e654 1 ep6fifoie [11] endpoint 6 slave fifo flag interrupt enable 0 0 0 0 edgepf pf ef ff 00000000 rw e655 1 ep6fifoirq [11,12] endpoint 6 slave fifo flag interrupt request 0 0 0 0 0 pf ef ff 00000000 rrrrrbbb e656 1 ep8fifoie [11] endpoint 8 slave fifo flag interrupt enable 0 0 0 0 edgepf pf ef ff 00000000 rw e657 1 ep8fifoirq [11,12] endpoint 8 slave fifo flag interrupt request 0 0 0 0 0 pf ef ff 00000000 rrrrrbbb e658 1 ibnie in-bulk-nak interrupt enable 0 0 ep8 ep6 ep4 ep2 ep1 ep0 00000000 rw e659 1 ibnirq [12] in-bulk-nak interrupt request 0 0 ep8 ep6 ep4 ep2 ep1 ep0 00xxxxxx rrbbbbbb e65a 1 nakie endpoint ping-nak / ibn interrupt enable ep8 ep6 ep4 ep2 ep1 ep0 0 ibn 00000000 rw e65b 1 nakirq [12] endpoint ping-nak / ibn interrupt request ep8 ep6 ep4 ep2 ep1 ep0 0 ibn xxxxxx0x bbbbbbrb e65c 1 usbie usb int enables 0 ep0ack hsgrant ures susp sutok sof sudav 00000000 rw e65d 1 usbirq [12] usb interrupt requests 0 ep0ack hsgrant ures susp sutok sof sudav 0xxxxxxx rbbbbbbb e65e 1 epie endpoint interrupt enables ep8 ep6 ep4 ep2 ep1out ep1in ep0out ep0in 00000000 rw e65f 1 epirq [12] endpoint interrupt requests ep8 ep6 ep4 ep2 ep1out ep1in ep0out ep0in 0 rw e660 1 gpifie [11] gpif interrupt enable 0 0 0 0 0 0 gpifwf gpifdone 00000000 rw e661 1 gpifirq [11] gpif interrupt request 0 0 0 0 0 0 gpifwf gpifdone 000000xx rw note: 12. the register can only be reset, it cannot be set table 5-1. fx2lp register summary (continued) hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 37 of 63 e662 1 usberrie usb error interrupt enables isoep8 isoep6 isoep4 isoep2 0 0 0 errlimit 00000000 rw e663 1 usberrirq[12] usb error interrupt requests isoep8 isoep6 isoep4 isoep2 0 0 0 errlimit 0000000x bbbbrrrb e664 1 errcntlim usb error counter and limit ec3 ec2 ec1 ec0 limit3 limit2 limit1 limit0 xxxx0100 rrrrbbbb e665 1 clrerrcnt clear error counter ec3:0 x x x x x x x x xxxxxxxx w e666 1 int2ivec interrupt 2 (usb) autovector 0 i2v4 i2v3 i2v2 i2v1 i2v0 0 0 00000000 r e667 1 int4ivec interrupt 4 (slave fifo & gpif) autovector 1 0 i4v3 i4v2 i4v1 i4v0 0 0 10000000 r e668 1 intsetup interrupt 2&4 setup 0 0 0 0 av2en 0 int4src av4en 00000000 rw e669 7 reserved input / output e670 1 portacfg i/o porta alternate configuration flagd slcs 0 0 0 0 int1 int0 00000000 rw e671 1 portccfg i/o portc alternate configuration gpifa7 gpifa6 gpifa5 gpifa4 gpifa3 gpifa2 gpifa1 gpifa0 00000000 rw e672 1 portecfg i/o porte alternate configuration gpifa8 t2ex int6 rxd1out rxd0out t2out t1out t0out 00000000 rw e673 4 xtalinsrc xtalin clock source 0 0 0 0 0 0 0 extclk 00000000 rrrrrrrb e677 1 reserved e678 1 i2cs i2c bus control & status start stop lastrd id1 id0 berr ack done 000xx000 bbbrrrrr e679 1 i2dat i2c bus data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw e67a 1 i2ctl i2c bus control 0 0 0 0 0 0 stopie 400khz 00000000 rw e67b 1 xautodat1 autoptr1 movx access, when aptren=1 d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw e67c 1 xautodat2 autoptr2 movx access, when aptren=1 d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw udma crc e67d 1 udmacrch [11] udma crc msb crc15 crc14 crc13 crc12 crc11 crc10 crc9 crc8 01001010 rw e67e 1 udmacrcl [11] udma crc lsb crc7 crc6 crc5 crc4 crc3 crc2 crc1 crc0 10111010 rw e67f 1 udmacrc- qualifier udma crc qualifier qenable 0 0 0 qstate qsignal2 qsignal1 qsignal0 00000000 brrrbbbb usb control e680 1 usbcs usb control & status hsm 0 0 0 discon nosynsof renum sigrsume x0000000 rrrrbbbb e681 1 suspend put chip into suspend x x x x x x x x xxxxxxxx w e682 1 wakeupcs wakeup control & status wu2 wu wu2pol wupol 0 dpen wu2en wuen xx000101 bbbbrbbb e683 1 togctl toggle control q s r io ep3 ep2 ep1 ep0 x0000000 rrrbbbbb e684 1 usbframeh usb frame count h 0 0 0 0 0 fc10 fc9 fc8 00000xxx r e685 1 usbframel usb frame count l fc7 fc6 fc5 fc4 fc3 fc2 fc1 fc0 xxxxxxxx r e686 1 microframe microframe count, 0-7 0 0 0 0 0 mf2 mf1 mf0 00000xxx r e687 1 fnaddr usb function address 0 fa6 fa5 fa4 fa3 fa2 fa1 fa0 0xxxxxxx r e688 2 reserved endpoints e68a 1 ep0bch [11] endpoint 0 byte count h (bc15) (bc14) (bc13) (bc12) (bc11) (bc10) (bc9) (bc8) xxxxxxxx rw e68b 1 ep0bcl [11] endpoint 0 byte count l (bc7) bc6 bc5 bc4 bc3 bc2 bc1 bc0 xxxxxxxx rw e68c 1 reserved e68d 1 ep1outbc endpoint 1 out byte count 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0xxxxxxx rw e68e 1 reserved e68f 1 ep1inbc endpoint 1 in byte count 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0xxxxxxx rw e690 1 ep2bch [11] endpoint 2 byte count h 0 0 0 0 0 bc10 bc9 bc8 00000xxx rw e691 1 ep2bcl [11] endpoint 2 byte count l bc7/skip bc6 bc5 bc4 bc3 bc2 bc1 bc0 xxxxxxxx rw e692 2 reserved e694 1 ep4bch [11] endpoint 4 byte count h 0 0 0 0 0 0 bc9 bc8 000000xx rw e695 1 ep4bcl [11] endpoint 4 byte count l bc7/skip bc6 bc5 bc4 bc3 bc2 bc1 bc0 xxxxxxxx rw e696 2 reserved e698 1 ep6bch [11] endpoint 6 byte count h 0 0 0 0 0 bc10 bc9 bc8 00000xxx rw e699 1 ep6bcl [11] endpoint 6 byte count l bc7/skip bc6 bc5 bc4 bc3 bc2 bc1 bc0 xxxxxxxx rw e69a 2 reserved e69c 1 ep8bch [11] endpoint 8 byte count h 0 0 0 0 0 0 bc9 bc8 000000xx rw e69d 1 ep8bcl [11] endpoint 8 byte count l bc7/skip bc6 bc5 bc4 bc3 bc2 bc1 bc0 xxxxxxxx rw e69e 2 reserved e6a0 1 ep0cs endpoint 0 control and status hsnak 0 0 0 0 0 busy stall 10000000 bbbbbbrb e6a1 1 ep1outcs endpoint 1 out control and status 0 0 0 0 0 0 busy stall 00000000 bbbbbbrb e6a2 1 ep1incs endpoint 1 in control and status 0 0 0 0 0 0 busy stall 00000000 bbbbbbrb e6a3 1 ep2cs endpoint 2 control and status 0 npak2 npak1 npak0 full empty 0 stall 00101000 rrrrrrrb table 5-1. fx2lp register summary (continued) hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 38 of 63 e6a4 1 ep4cs endpoint 4 control and status 0 0 npak1 npak0 full empty 0 stall 00101000 rrrrrrrb e6a5 1 ep6cs endpoint 6 control and status 0 npak2 npak1 npak0 full empty 0 stall 00000100 rrrrrrrb e6a6 1 ep8cs endpoint 8 control and status 0 0 npak1 npak0 full empty 0 stall 00000100 rrrrrrrb e6a7 1 ep2fifoflgs endpoint 2 slave fifo flags 0 0 0 0 0 pf ef ff 00000010 r e6a8 1 ep4fifoflgs endpoint 4 slave fifo flags 0 0 0 0 0 pf ef ff 00000010 r e6a9 1 ep6fifoflgs endpoint 6 slave fifo flags 0 0 0 0 0 pf ef ff 00000110 r e6aa 1 ep8fifoflgs endpoint 8 slave fifo flags 0 0 0 0 0 pf ef ff 00000110 r e6ab 1 ep2fifobch endpoint 2 slave fifo total byte count h 0 0 0 bc12 bc11 bc10 bc9 bc8 00000000 r e6ac 1 ep2fifobcl endpoint 2 slave fifo total byte count l bc7 bc6 bc5 bc4 bc3 bc2 bc1 bc0 00000000 r e6ad 1 ep4fifobch endpoint 4 slave fifo total byte count h 0 0 0 0 0 bc10 bc9 bc8 00000000 r e6ae 1 ep4fifobcl endpoint 4 slave fifo total byte count l bc7 bc6 bc5 bc4 bc3 bc2 bc1 bc0 00000000 r e6af 1 ep6fifobch endpoint 6 slave fifo total byte count h 0 0 0 0 bc11 bc10 bc9 bc8 00000000 r e6b0 1 ep6fifobcl endpoint 6 slave fifo total byte count l bc7 bc6 bc5 bc4 bc3 bc2 bc1 bc0 00000000 r e6b1 1 ep8fifobch endpoint 8 slave fifo total byte count h 0 0 0 0 0 bc10 bc9 bc8 00000000 r e6b2 1 ep8fifobcl endpoint 8 slave fifo total byte count l bc7 bc6 bc5 bc4 bc3 bc2 bc1 bc0 00000000 r e6b3 1 sudptrh setup data pointer high address byte a15 a14 a13 a12 a11 a10 a9 a8 xxxxxxxx rw e6b4 1 sudptrl setup data pointer low ad- dress byte a7 a6 a5 a4 a3 a2 a1 0 xxxxxxx0 bbbbbbbr e6b5 1 sudptrctl setup data pointer auto mode 0 0 0 0 0 0 0 sdpauto 00000001 rw 2 reserved e6b8 8 setupdat 8 bytes of setup data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx r setupdat[0] = bmrequesttype setupdat[1] = bmrequest setupdat[2:3] = wvalue setupdat[4:5] = windex setupdat[6:7] = wlength gpif e6c0 1 gpifwfselect waveform selector singlewr1 singlewr0 singlerd1 singlerd0 fifowr1 fifowr0 fiford1 fiford0 11100100 rw e6c1 1 gpifidlecs gpif done, gpif idle drive mode done 0 0 0 0 0 0 idledrv 10000000 rw e6c2 1 gpifidlectl inactive bus, ctl states 0 0 ctl5 ctl4 ctl3 ctl2 ctl1 ctl0 11111111 rw e6c3 1 gpifctlcfg ctl drive type trictl 0 ctl5 ctl4 ctl3 ctl2 ctl1 ctl0 00000000 rw e6c4 1 gpifadrh [11] gpif address h 0 0 0 0 0 0 0 gpifa8 00000000 rw e6c5 1 gpifadrl [11] gpif address l gpifa7 gpifa6 gpifa5 gpifa4 gpifa3 gpifa2 gpifa1 gpifa0 00000000 rw flowstate e6c6 1 flowstate flowstate enable and selector fse 0 0 0 0 fs2 fs1 fs0 00000000 brrrrbbb e6c7 1 flowlogic flowstate logic lfunc1 lfunc0 terma2 terma1 terma0 termb2 termb1 termb0 00000000 rw e6c8 1 floweq0ctl ctl-pin states in flowstate (when logic = 0) ctl0e3 ctl0e2 ctl0e1/ ctl5 ctl0e0/ ctl4 ctl3 ctl2 ctl1 ctl0 00000000 rw e6c9 1 floweq1ctl ctl-pin states in flow- state (when logic = 1) ctl0e3 ctl0e2 ctl0e1/ ctl5 ctl0e0/ ctl4 ctl3 ctl2 ctl1 ctl0 00000000 rw e6ca 1 flowholdoff holdoff configuration hoperiod3 hoperiod2 hoperiod1 hoperiod 0 hostate hoctl2 hoctl1 hoctl0 00010010 rw e6cb 1 flowstb flowstate strobe configuration slave rdyasync ctltogl sustain 0 mstb2 mstb1 mstb0 00100000 rw e6cc 1 flowstbedge flowstate rising/falling edge configuration 0 0 0 0 0 0 falling rising 00000001 rrrrrrbb e6cd 1 flowstbperiod master-strobe half-period d7 d6 d5 d4 d3 d2 d1 d0 00000010 rw e6ce 1 gpiftcb3 [11] gpif transaction count byte 3 tc31 tc30 tc29 tc28 tc27 tc26 tc25 tc24 00000000 rw e6cf 1 gpiftcb2 [11] gpif transaction count byte 2 tc23 tc22 tc21 tc20 tc19 tc18 tc17 tc16 00000000 rw e6d0 1 gpiftcb1 [11] gpif transaction count byte 1 tc15 tc14 tc13 tc12 tc11 tc10 tc9 tc8 00000000 rw e6d1 1 gpiftcb0 [11] gpif transaction count byte 0 tc7 tc6 tc5 tc4 tc3 tc2 tc1 tc0 00000001 rw 2 reserved 00000000 rw reserved table 5-1. fx2lp register summary (continued) hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 39 of 63 reserved e6d2 1 ep2gpifflgsel [11] endpoint 2 gpif flag select 0 0 0 0 0 0 fs1 fs0 00000000 rw e6d3 1 ep2gpifpfstop endpoint 2 gpif stop transaction on prog. flag 0 0 0 0 0 0 0 fifo2flag 00000000 rw e6d4 1 ep2gpiftrig [11] endpoint 2 gpif trigger x x x x x x x x xxxxxxxx w 3 reserved reserved reserved e6da 1 ep4gpifflgsel [11] endpoint 4 gpif flag select 0 0 0 0 0 0 fs1 fs0 00000000 rw e6db 1 ep4gpifpfstop endpoint 4 gpif stop transaction on gpif flag 0 0 0 0 0 0 0 fifo4flag 00000000 rw e6dc 1 ep4gpiftrig [11] endpoint 4 gpif trigger x x x x x x x x xxxxxxxx w 3 reserved reserved reserved e6e2 1 ep6gpifflgsel [11] endpoint 6 gpif flag select 0 0 0 0 0 0 fs1 fs0 00000000 rw e6e3 1 ep6gpifpfstop endpoint 6 gpif stop transaction on prog. flag 0 0 0 0 0 0 0 fifo6flag 00000000 rw e6e4 1 ep6gpiftrig [11] endpoint 6 gpif trigger x x x x x x x x xxxxxxxx w 3 reserved reserved reserved e6ea 1 ep8gpifflgsel [11] endpoint 8 gpif flag select 0 0 0 0 0 0 fs1 fs0 00000000 rw e6eb 1 ep8gpifpfstop endpoint 8 gpif stop transaction on prog. flag 0 0 0 0 0 0 0 fifo8flag 00000000 rw e6ec 1 ep8gpiftrig [11] endpoint 8 gpif trigger x x x x x x x x xxxxxxxx w 3 reserved e6f0 1 xgpifsgldath gpif data h (16-bit mode only) d15 d14 d13 d12 d11 d10 d9 d8 xxxxxxxx rw e6f1 1 xgpifsgldatlx read/write gpif data l & trigger transaction d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw e6f2 1 xgpifsgldatl- nox read gpif data l, no transaction trigger d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx r e6f3 1 gpifreadycfg internal rdy, sync/async, rdy pin states intrdy sas tcxrdy5 0 0 0 0 0 00000000 bbbrrrrr e6f4 1 gpifreadystat gpif ready status 0 0 rdy5 rdy4 rdy3 rdy2 rdy1 rdy0 00xxxxxx r e6f5 1 gpifabort abort gpif waveforms x x x x x x x x xxxxxxxx w e6f6 2 reserved endpoint buffers e740 64 ep0buf ep0-in/-out buffer d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw e780 64 ep10utbuf ep1-out buffer d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw e7c0 64 ep1inbuf ep1-in buffer d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw 2048 reserved rw f000 1024 ep2fifobuf 512/1024-byte ep 2 / slave fifo buffer (in or out) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw f400 512 ep4fifobuf 512 byte ep 4 / slave fifo buffer (in or out) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw f600 512 reserved f800 1024 ep6fifobuf 512/1024-byte ep 6 / slave fifo buffer (in or out) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw fc00 512 ep8fifobuf 512 byte ep 8 / slave fifo buffer (in or out) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw fe00 512 reserved xxxx i2c configuration byte 0 discon 0 0 0 0 0 400khz xxxxxxxx [14] n/a special function registers (sfrs) 80 1 ioa [13] port a (bit addressable) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw 81 1 sp stack pointer d7 d6 d5 d4 d3 d2 d1 d0 00000111 rw 82 1 dpl0 data pointer 0 l a7 a6 a5 a4 a3 a2 a1 a0 00000000 rw 83 1 dph0 data pointer 0 h a15 a14 a13 a12 a11 a10 a9 a8 00000000 rw 84 1 dpl1 [13] data pointer 1 l a7 a6 a5 a4 a3 a2 a1 a0 00000000 rw 85 1 dph1 [13] data pointer 1 h a15 a14 a13 a12 a11 a10 a9 a8 00000000 rw 86 1 dps [13] data pointer 0/1 select 0 0 0 0 0 0 0 sel 00000000 rw 87 1 pcon power control smod0 x 1 1 x x x idle 00110000 rw 88 1 tcon timer/counter control (bit addressable) tf1 tr1 tf0 tr0 ie1 it1 ie0 it0 00000000 rw 89 1 tmod timer/counter mode control gate ct m1 m0 gate ct m1 m0 00000000 rw 8a 1 tl0 timer 0 reload l d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw table 5-1. fx2lp register summary (continued) hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 40 of 63 8b 1 tl1 timer 1 reload l d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw 8c 1 th0 timer 0 reload h d15 d14 d13 d12 d11 d10 d9 d8 00000000 rw 8d 1 th1 timer 1 reload h d15 d14 d13 d12 d11 d10 d9 d8 00000000 rw 8e 1 ckcon [13] clock control x x t2m t1m t0m md2 md1 md0 00000001 rw 8f 1 reserved 90 1 iob [13] port b (bit addressable) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw 91 1 exif [13] external interrupt flag(s) ie5 ie4 i2cint usbnt 1 0 0 0 00001000 rw 92 1 mpage [13] upper addr byte of movx using @r0 / @r1 a15 a14 a13 a12 a11 a10 a9 a8 00000000 rw 93 5 reserved 98 1 scon0 serial port 0 control (bit addressable) sm0_0 sm1_0 sm2_0 ren_0 tb8_0 rb8_0 ti_0 ri_0 00000000 rw 99 1 sbuf0 serial port 0 data buffer d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw 9a 1 autoptrh1 [13] autopointer 1 address h a15 a14 a13 a12 a11 a10 a9 a8 00000000 rw 9b 1 autoptrl1 [13] autopointer 1 address l a7 a6 a5 a4 a3 a2 a1 a0 00000000 rw 9c 1 reserved 9d 1 autoptrh2 [13] autopointer 2 address h a15 a14 a13 a12 a11 a10 a9 a8 00000000 rw 9e 1 autoptrl2 [13] autopointer 2 address l a7 a6 a5 a4 a3 a2 a1 a0 00000000 rw 9f 1 reserved a0 1 ioc [13] port c (bit addressable) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw a1 1 int2clr [13] interrupt 2 clear x x x x x x x x xxxxxxxx w a2 1 int4clr [13] interrupt 4 clear x x x x x x x x xxxxxxxx w a3 5 reserved a8 1 ie interrupt enable (bit addressable) ea es1 et2 es0 et1 ex1 et0 ex0 00000000 rw a9 1 reserved aa 1 ep2468stat [13] endpoint 2,4,6,8 status flags ep8f ep8e ep6f ep6e ep4f ep4e ep2f ep2e 01011010 r ab 1 ep24fifoflgs [13] endpoint 2,4 slave fifo status flags 0 ep4pf ep4ef ep4ff 0 ep2pf ep2ef ep2ff 00100010 r ac 1 ep68fifoflgs [13] endpoint 6,8 slave fifo status flags 0 ep8pf ep8ef ep8ff 0 ep6pf ep6ef ep6ff 01100110 r ad 2 reserved af 1 autoptrsetup [13] autopointer 1&2 setup 0 0 0 0 0 aptr2inc aptr1inc aptren 00000110 rw b0 1 iod [13] port d (bit addressable) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw b1 1 ioe [13] port e (not bit addressable) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw b2 1 oea [13] port a output enable d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw b3 1 oeb [13] port b output enable d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw b4 1 oec [13] port c output enable d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw b5 1 oed [13] port d output enable d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw b6 1 oee [13] port e output enable d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw b7 1 reserved b8 1 ip interrupt priority (bit ad- dressable) 1 ps1 pt2 ps0 pt1 px1 pt0 px0 10000000 rw b9 1 reserved ba 1 ep01stat [13] endpoint 0&1 status 0 0 0 0 0 ep1inbsy ep1outbs y ep0bsy 00000000 r bb 1 gpiftrig [13] [11] endpoint 2,4,6,8 gpif slave fifo trigger done 0 0 0 0 rw ep1 ep0 10000xxx brrrrbbb bc 1 reserved bd 1 gpifsgldath [13] gpif data h (16-bit mode only) d15 d14 d13 d12 d11 d10 d9 d8 xxxxxxxx rw be 1 gpifsgldatlx [13] gpif data l w/ trigger d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx rw bf 1 gpifsgldat lnox [13] gpif data l w/ no trigger d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx r c0 1 scon1 [13] serial port 1 control (bit addressable) sm0_1 sm1_1 sm2_1 ren_1 tb8_1 rb8_1 ti_1 ri_1 00000000 rw c1 1 sbuf1 [13] serial port 1 data buffer d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw c2 6 reserved c8 1 t2con timer/counter 2 control (bit addressable) tf2 exf2 rclk tclk exen2 tr2 ct2 cprl2 00000000 rw c9 1 reserved ca 1 rcap2l capture for timer 2, auto- reload, up-counter d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw cb 1 rcap2h capture for timer 2, auto- reload, up-counter d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw cc 1 tl2 timer 2 reload l d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw cd 1 th2 timer 2 reload h d15 d14 d13 d12 d11 d10 d9 d8 00000000 rw ce 2 reserved d0 1 psw program status word (bit addressable) cy ac f0 rs1 rs0 ov f1 p 00000000 rw notes: 13. sfrs not part of the standard 8051 architecture. 14. if no eeprom is detected by the sie then the default is 00000000. table 5-1. fx2lp register summary (continued) hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 41 of 63 d1 7 reserved d8 1 eicon [13] external interrupt control smod1 1 eresi resi int6 0 0 0 01000000 rw d9 7 reserved e0 1 acc accumulator (bit address- able) d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw e1 7 reserved e8 1 eie [13] external interrupt en- able(s) 1 1 1 ex6 ex5 ex4 ei2c eusb 11100000 rw e9 7 reserved f0 1 b b (bit addressable) d7 d6 d5 d4 d3 d2 d1 d0 00000000 rw f1 7 reserved f8 1 eip [13] external interrupt priority control 1 1 1 px6 px5 px4 pi2c pusb 11100000 rw f9 7 reserved table 5-1. fx2lp register summary (continued) hex size name description b7 b6 b5 b4 b3 b2 b1 b0 default access r = read-only bit w = write-only bit b = both read/write bit r = all bits read-only w = all bits write-only
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 42 of 63 6.0 absolute maximum ratings storage temperature ............................................................................................................ .............. .............. ....?65c to +150c ambient temperature with power supplied ........................................................................................ ........................0c to +70c supply voltage to ground potential . ............ .............. .............. .............. .............. .............. .......... ............................ ?0.5v to +4.0v dc input voltage to any input pin .............................................................................................. ...................................... 5.25v [15] dc voltage applied to outputs in high z state.................................................................................. ............ ?0.5v to vcc + 0.5v power dissipation ........................................... ................................................................... .............................................. tbd mw static discharge voltage ....................................................................................................... .............. ........... ........... ........ > 2000v max output current, per i/o port ......................... ...................................................................... .......................................... 10 ma max output current, all five i/o ports (128- and 100-pi n packages) ........... .............. .............. ........... ........... ...................... 50 ma 7.0 operating conditions t a (ambient temperature under bias) . ............. .............. .............. .............. .............. .............. .......... .........................0c to +70c supply voltage ................................................................................................................. ........................................+3.0v to +3.6v ground voltage ................................................................................................................. .......................................................... 0v f osc (oscillator or crystal frequency) .............................................................................................. ............... 24 mhz 100 ppm ............................................................................................................................... ............ .............. ........... ........ parallel resonant 8.0 dc characteristics 8.1 usb transceiver usb 2.0-compliant in full- and high-speed modes. note: 15. it is recommended to not power i/o with chip power is off. table 8-1. dc characteristics parameter description conditions min. typ. max. unit vcc supply voltage 3.0 3.3 3.6 v v ih input high voltage 2 5.25 v v il input low voltage ?0.5 0.8 v v ih_x crystal input high voltage tbd tbd v v il_x crystal input low voltage tbd tbd v i i input leakage current 0< v in < vcc 10 a v oh output voltage high i out = 4 ma 2.4 v v ol output low voltage i out = ?4 ma 0.4 v i oh output current high 4ma i ol output current low 4ma c in input pin capacitance except d+/d? 10 pf d+/d? 15 pf i susp suspend current connected tbd tbd a disconnected tbd tbd a i cc supply current 8051 running, connected to usb hs tbd tbd ma 8051 running, connected to usb fs tbd tbd ma i unconfig unconfigured current current before device is granted full current described in device descriptors tbd tbd t reset reset time after valid power vcc min = 3.0v 5.0 ms pin reset after powered on 200 s
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 43 of 63 9.0 ac electrical characteristics 9.1 usb transceiver usb 2.0-compliant in full- and high-speed modes. 9.2 program memory read notes: 16. clkout is shown with positive polarity. 17. t acc1 is computed from the above parameters as follows: t acc1 (24 mhz) = 3*t cl ? t av ?t dsu = 106 ns t acc1 (48 mhz) = 3*t cl ? t av ? t dsu = 43 ns. table 9-1. program memory read parameters parameter description min. typ. max. unit notes t cl 1/clkout frequency 20.83 ns 48 mhz 41.66 ns 24 mhz 83.2 ns 12 mhz t av delay from clock to valid address 0 10.7 ns t stbl clock to psen low 0 8 ns t stbh clock to psen high 0 8 ns t soel clock to oe low 11.1 ns t scsl clock to cs low 13 ns t dsu data setup to clock 9.6 ns t dh data hold time 0 ns t cl t dh t soel t scsl psen# d[7..0] oe# a[15..0] cs# t stbl data in t acc1 t av t stbh t av figure 9-1. program memory read timing diagram clkout [16] [17]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 44 of 63 9.3 data memory read table 9-2. data memory read parameters parameter description min. typ. max. unit notes t cl 1/clkout frequency 20.83 ns 48 mhz 41.66 ns 24 mhz 83.2 ns 12 mhz t av delay from clock to valid address 10.7 ns t stbl clock to rd low 11 ns t stbh clock to rd high 11 ns t scsl clock to cs low 13 ns t soel clock to oe low 11.1 ns t dsu data setup to clock 9.6 ns t dh data hold time 0 ns note: 18. t acc2 and t acc3 are computed from the above parameters as follows: t acc2 (24 mhz) = 3*t cl ? t av ?t dsu = 106 ns t acc2 (48 mhz) = 3*t cl ? t av ? t dsu = 43 ns t acc3 (24 mhz) = 5*t cl ? t av ?t dsu = 190 ns t acc3 (48 mhz) = 5*t cl ? t av ? t dsu = 86 ns. data in t cl a[15..0] t av t av rd# t stbl t stbh t dh d[7..0] data in t acc1 [18 t dsu stretch = 0 stretch = 1 t cl a[15..0] t av rd# t dh d[7..0] t acc1 [18] t dsu cs# cs# t scsl oe# t soel figure 9-2. data memory read timing diagram clkout [16] clkout [16]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 45 of 63 9.4 data memory write table 9-3. data memory write parameters parameter description min. max. unit notes t av delay from clock to valid address 0 10.7 ns t stbl clock to wr pulse low 0 11.2 ns t stbh clock to wr pulse high 0 11.2 ns t scsl clock to cs pulse low 13.0 ns t on1 clock to data turn-on 0 13.1 ns t off1 clock to data hold time 0 13.1 ns t off1 clkout a[15..0] wr# t av d[7..0] t cl t stbl t stbh data out t off1 clkout a[15..0] wr# t av d[7..0] t cl data out stretch = 1 t on1 t scsl t av cs# t on1 cs# figure 9-3. data memory write timing diagram
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 46 of 63 9.5 gpif synchronous signals notes: 19. dashed lines denote signals with programmable polarity. 20. gpif asynchronous rdy x signals have a minimum setup time of 50 ns when using internal 48-mhz ifclk. 21. ifclk must not exceed 48 mhz. table 9-4. gpif synchronous signals parameters with internally sourced ifclk [20, 21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 ns t sry rdy x to clock setup time 8.9 ns t ryh clock to rdy x 0ns t sgd gpif data to clock setup time 9.2 ns t dah gpif data hold time 0 ns t sga clock to gpif address propagation delay 7.5 ns t xgd clock to gpif data output propagation delay 11 ns t xctl clock to ctl x output propagation delay 6.7 ns table 9-5. gpif synchronous signals pa rameters with extern ally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 200 ns t sry rdy x to clock setup time 2.9 ns t ryh clock to rdy x 3.7 ns t sgd gpif data to clock setup time 3.2 ns t dah gpif data hold time 4.5 ns t sga clock to gpif address propagation delay 11.5 ns t xgd clock to gpif data output propagation delay 15 ns t xctl clock to ctl x output propagation delay 10.7 ns data(output) t xgd ifclk rdy x data(input) valid t sry t ryh t ifclk t sgd ctl x t xctl t dah n n+1 gpifadr[8:0] t sga figure 9-4. gpif synchronous signals timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 47 of 63 9.6 slave fifo synchronous read table 9-6. slave fifo synchronous read parameters with internally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 ns t srd slrd to clock setup time 18.7 ns t rdh clock to slrd hold time 0 ns t oeon sloe turn-on to fifo data valid 10.5 ns t oeoff sloe turn-off to fifo data hold 10.5 ns t xflg clock to flags output propagation delay 9.5 ns t xfd clock to fifo data output propagation delay tbd 11 ns table 9-7. slave fifo synchronous read parameters with externally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 200 ns t srd slrd to clock setup time 12.7 ns t rdh clock to slrd hold time 3.7 ns t oeon sloe turn-on to fifo data valid 10.5 ns t oeoff sloe turn-off to fifo data hold 10.5 ns t xflg clock to flags output propagation delay 13.5 ns t xfd clock to fifo data output propagation delay tbd 15 ns ifclk slrd flags sloe t srd t rdh t oeon t xfd t xflg data t ifclk n+1 t oeoff n figure 9-5. slave fifo synchronous read timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 48 of 63 9.7 slave fifo asynchronous read table 9-8. slave fifo asynchronous read parameters [22] parameter descrip tion min. max. unit t rdpwl slrd pulse width low 50 ns t rdpwh slrd pulse width high 50 ns t xflg slrd to flags output propagation delay 70 ns t xfd slrd to fifo data output propagation delay 15 ns t oeon sloe turn-on to fifo data valid 10.5 ns t oeoff sloe turn-off to fifo data hold 10.5 ns slrd flags t rdpwl t rdpwh sloe t xflg t xfd data t oeon t oeoff n+1 n figure 9-6. slave fifo asynchronous read timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 49 of 63 9.8 slave fifo synchronous write table 9-9. slave fifo synchronous write parameters with internally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 ns t swr slwr to clock setup time 18.1 ns t wrh clock to slwr hold time 0 ns t sfd fifo data to clock setup time 9.2 ns t fdh clock to fifo data hold time 0 ns t xflg clock to flags output propagation time 9.5 ns table 9-10. slave fifo synchronous write parameters with externally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 200 ns t swr slwr to clock setup time 12.1 ns t wrh clock to slwr hold time 3.6 ns t sfd fifo data to clock setup time 3.2 ns t fdh clock to fifo data hold time 4.5 ns t xflg clock to flags output propagation time 13.5 ns note: 22. slave fifo asynchronous parameter values use internal ifclk setting at 48 mhz. z z t sfd t fdh data ifclk slwr flags t wrh t xflg t ifclk t swr n figure 9-7. slave fifo synchronous write timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 50 of 63 9.9 slave fifo asynchronous write 9.10 slave fifo synchronous packet end strobe table 9-11. slave fifo asynchronous write parameters with internally sourced ifclk [22] parameter descrip tion min. max. unit t wrpwl slwr pulse low 50 ns t wrpwh slwr pulse high 70 ns t sfd slwr to fifo data setup time 10 ns t fdh fifo data to slwr hold time 10 ns t xfd slwr to flags output propagation delay 70 ns table 9-12. slave fifo synchronous packet end strobe parameters with internally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 ns t spe pktend to clock setup time 14.6 ns t peh clock to pktend hold time 0 ns t xflg clock to flags output propagation delay 9.5 ns table 9-13. slave fifo synchronous packet end strobe parameters with externally sourced ifclk [21] parameter descrip tion min. max. unit t ifclk ifclk period 20.83 200 ns t spe pktend to clock setup time 8.6 ns t peh clock to pktend hold time 2.5 ns t xflg clock to flags output propagation delay 13.5 ns data t sfd t fdh flags t xfd slwr/slcs# t wrpwh t wrpwl figure 9-8. slave fifo asynchronous write timing diagram [19] flags t xflg ifclk pktend t spe t peh figure 9-9. slave fifo synchronou s packet end strobe timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 51 of 63 9.11 slave fifo asynchronous packet end strobe 9.12 slave fifo output enable 9.13 slave fifo address to flags/data table 9-14. slave fifo asynchro nous packet end strobe parameters [22] parameter descrip tion min. max. unit t pepwl pktend pulse width low 50 ns t pwpwh pktend pulse width high 50 ns t xflg pktend to flags output propagation delay 70 ns table 9-15. slave fifo output enable parameters parameter descrip tion min. max. unit t oeon sloe assert to fifo data output 10.5 ns t oeoff sloe deassert to fifo data hold 10.5 ns table 9-16. slave fifo address to flags/data parameters parameter descrip tion min. max. unit t xflg fifoadr[1:0] to flags outp ut propagation delay 10.7 ns t xfd fifoadr[1:0] to fifodata ou tput propagation delay 14.3 ns flags t xflg pktend t pepwl t pepwh figure 9-10. slave fifo asynchronous packet end strobe timing diagram [19] sloe data t oeon t oeoff figure 9-11. slave fifo output enable timing diagram [19] fifoadr [1.0] data t xflg t xfd flags nn+1 figure 9-12. slave fifo address to flags/data timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 52 of 63 9.14 slave fifo synchronous address 9.15 slave fifo asynchronous address table 9-17. slave fifo synchronous address parameters [21] parameter descrip tion min. max. unit t ifclk interface clock period 20.83 200 ns t sfa fifoadr[1:0] to clock setup time 25 ns t fah clock to fifoadr[1:0] hold time 10 ns table 9-18. slave fifo asyn chronous address parameters [22] parameter descrip tion min. max. unit t sfa fifoadr[1:0] to rd/wr /pktend setup time 10 ns t fah rd/wr/pktend to fifoadr[1:0] hold time 10 ns ifclk slcs/fifoadr [1:0] t sfa t fah figure 9-13. slave fifo synchronous address timing diagram rd/wr/pktend slcs/fifoadr [1:0] t sfa t fah figure 9-14. slave fifo asynchronous address timing diagram [19]
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 53 of 63 9.16 sequence diagram 9.16.1 single and burst synchronous read example figure 9-15 shows the timing relationship of the slave fifo signals during a synchronous fifo read using ifclk as the synchronizing clock. the diagram illustrates a single read followed by a burst read. ? at t = 0 the fifo address is stable and the signal slcs is as serted (slcs may be tied low in some applications). note: t sfa has a minimum of 25 nsec. this means when ifclk is runni ng at 48 mhz, the fifo address setup time is more than one ifclk cycle. ? at = 1, sloe is asserted. sloe is an output enable only, whose sole function is to dr ive the data bus. the data that is driven on the bus is the data that the internal fifo pointer is currently pointing to. in this example it is the first data value in t he fifo. note: the data is pre-fetched and is driven on the bus when sloe is asserted. ? at t = 2, slrd is asserted. slrd must meet the setup time of t srd (time from asserting the slrd signal to the rising edge of the ifclk) and maintain a minimum hold time of t rdh (time from the ifclk edge to the de-assertion of the slrd signal). if the slcs signal is used, it must be asserted with slrd, or before slrd is asserted (i.e. the slcs and slrd signals must both be asserted to start a valid read condition). ? the fifo pointer is updated on the rising edge of the ifclk, wh ile slrd is asserted. this star ts the propagation of data from the newly addressed location to the data bus. after a propagation delay of t xfd (measured from the rising edge of ifclk) the new data value is present. n is the first data value read from the fifo. in order to have data on the fifo data bus, sloe must also be asserted. the same sequence of events are shown for a burst read and are marked with the time indicators of t=0 through 5. note: for the burst mode, the slrd and sloe are left asserted during the entire duration of the read. in the burst read mode, when sloe is asserted, data indexed by the fifo pointe r is on the data bus. during the first read cycle, on the rising edge of the clock the ifclk slrd flags sloe data figure 9-15. slave fifo synchronous read sequence and timing diagram t srd t rdh t oeon t xfd t xflg t ifclk n+1 data driven: n >= t srd t oeon t xfd n+2 t xfd t xfd >= t rdh t oeoff n+4 n+3 t oeoff t sfa t fah fifoadr slcs t=0 n+1 t=1 t=2 t=3 t=4 t fah t=0 t sfa t=1 t=2 t=3 t=4 nn n+1 n+2 fifo pointer n+3 fifo data bus n+4 not driven driven: n sloe slrd n+1 n+2 n+3 not driven slrd sloe ifclk figure 9-16. slave fifo synchronous sequence of events diagram ifclk ifclk ifclk ifclk n+4 n+4 ifclk ifclk ifclk ifclk slrd n+1 slrd n+1 n+1 sloe not driven n+4 n+4 ifclk sloe
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 54 of 63 fifo pointer is updated and increments to point to address n+1. for each subsequent rising edge of ifclk, while the slrd is asserted, the fifo pointer is incremented and the next data value is placed on the data bus. 9.16.2 single and burst synchronous write the figure 9-17 shows the timing relationship of the slave fifo si gnals during a synchronous write using ifclk as the synchronizing clock. the diagram il lustrates a single write followed by burst writ e of 3 bytes and committing all 4 bytes as a short packet using the pktend pin. ? at t = 0 the fifo address is stable and the signal slcs is asserted. (slcs may be tied low in some applications) note: t sfa has a minimum of 25 ns. this means when ifclk is running at 48 mhz, the fifo addr ess setup time is more than one ifclk cycle. ? at t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of t sfd before the rising edge of ifclk. ? at t = 2, slwr is asserted. the slwr must meet the setup time of t swr (time from asserting the slwr signal to the rising edge of ifclk) and maintain a minimum hold time of t wrh (time from the ifclk edge to the de-assertion of the slwr signal). if slcs signal is used, it must be asse rted with slwr or before slwr is asserted . (i.e. the slcs and slwr signals must both be asserted to start a valid write condition). ? while the slwr is asserted, data is written to the fifo and on the rising edge of the ifclk, the fifo pointer is incremented. the fifo flag will also be updated after a delay of t xflg from the rising edge of the clock. the same sequence of events are also shown for a burst write and are mark ed with the time indicators of t=0 through 5. note: for the burst mode, slwr and slcs are left asserted for the entir e duration of writing all the r equired data values. in this bu rst write mode, once the slwr is asserted, the data on the fifo dat a bus is written to the fifo on every rising edge of ifclk. the fifo pointer is updated on each rising edge of ifclk. in figure 9-17 , once the four bytes are writ ten to the fifo, slwr is de- asserted. the short 4-byte packet can be committed to the host by asserting the pktend signal. there is no specific timing requirement that needs to be met for asserting pktend signal with regards to asserting the slwr signal. pktend can be asserted with the last data value or thereafter. the only consideration is the setup time t spe and the hold time t peh must be met. in the scenario of figure 9-17 , the number of data values committed includes the last value written to the fifo. in this example, both the data value and the pktend si gnal are clocked on the same rising edge of ifclk. pktend can be asserted in subsequent clock cycles. the fifoaddr lines should be held co nstant during the pktend assertion. ifclk slwr flags data figure 9-17. slave fifo synchronous write sequence and timing diagram [19] t swr t wrh t sfd t xflg t ifclk n >= t swr >= t wrh n+3 pktend n+2 t xflg t sfa t fah t spe t peh fifoadr slcs t sfd t sfd t sfd n+1 t fdh t fdh t fdh t fdh t=0 t=1 t=2 t=3 t sfa t fah t=1 t=0 t=2 t=5 t=3 t=4
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 55 of 63 9.16.3 sequence diagram of a single and burst asynchronous read figure 9-18 diagrams the timing relationship of the slave fifo signa ls during an asynchronous fifo read. it shows a single read followed by a burst read. ? at t = 0 the fifo address is stable and the slcs signal is asserted. ? at t = 1, sloe is asserted. this results in the data bus being driven. the data that is driven on to the bus is previous data, it data that was in the fifo from a prior read cycle. ? at t = 2, slrd is asserted. the slrd must meet the minimum active pulse of t rdpwl and minimum de-active pulse width of t rdpwh . if slcs is used then, slcs must be in asserted with slrd or before slrd is asserted. (i.e. the slcs and slrd signals must both be asserted to start a valid read condition.) ? the data that will be driven, after asserting slrd, is the updated data from the fifo. this data is valid after a propagation delay of t xfd from the activating edge of slrd. in figure 9-18 , data n is the first valid data read from the fifo. for data to appear on the data bus during the read cycle (i.e. slrd is asserted), sloe must be in an asserted state. slrd and sloe can also be tied together. the same sequence of events is also shown for a burst read ma rked with t = 0 through 5. note: in burst read mode, during sloe is assertion, the data bus is in a driven state and outputs the previous data. once sl rd is asserted, the data from the fifo is driven on the data bus (sloe must also be a sserted) and then the fifo pointer is incremented. slrd flags sloe data figure 9-18. slave fifo asynchronous read sequence and timing diagram t rdpwh t rdpwl t oeon t xfd t xflg n data (x) t xfd n+1 t xfd t oeoff n+3 n+2 t oeoff t xflg t sfa t fah fifoadr slcs driven t xfd t oeon t rdpwh t rdpwl t rdpwh t rdpwl t rdpwh t rdpwl t fah t sfa n t=0 t=0 t=1 t=7 t=2 t=3 t=4 t=5 t=6 t=1 t=2 t=3 t=4 nn sloe slrd fifo pointer n+3 fifo data bus not driven driven: x n not driven sloe n n+2 n+3 figure 9-19. slave fifo asynchronous read sequence of events diagram slrd n n+1 slrd n+1 slrd n+1 n+2 slrd n+2 slrd n+2 n+1 sloe not driven sloe n n+1 n+1
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 56 of 63 9.16.4 sequence diagram of a single and burst asynchronous write figure 9-20 diagrams the timing relationship of the slave fifo write in an asynchronous mode. the diagram shows a single write followed by a burst write of 3 bytes and committing the 4-byte-short packet using pktend. at t = 0 the fifo address is applied, insuring that it meets the setup time of t sfa . if slcs is used, it must also be asserted (slcs may be tied low in some applications). at t = 1 slwr is asserted. slwr must meet the minimum active pulse of t wrpwl and minimum de-active pulse width of t wrpwh . if the slcs is used, it must be in asse rted with slwr or before slwr is asserted. at t = 2, data must be present on the bus t sfd before the de-asserting edge of slwr. at t = 3, de-asserting slwr will cause the da ta to be written from the data bus to th e fifo and then increments the fifo point er. the fifo flag is also updated after t xflg from the de-asserting edge of slwr. the same sequence of events are shown for a burst write and is indicated by the timing marks of t = 0 through 5. note: in the burst write mode, once slwr is de-asserted, the data is written to the fifo and then the fifo pointer is incremented to the nex t byte in the fifo. the fifo pointer is post incremented. in figure 9-20 once the four bytes are written to the fifo and slwr is de-asserted, the short 4-byte packet can be committed to the host using the pktend. the external device should be de signed to not assert slwr and the pktend signal at the same time. it should be designed to assert the pktend after slwr is de-asserted and met the minimum de-asserted pulse width. the fifoaddr lines are to be held cons tant during the pktend assertion. pktend slwr flags data figure 9-20. slave fifo asynchronous write sequence and timing diagram [19] t wrpwh t wrpwl t xflg n t sfd n+1 t xflg t sfa t fah fifoadr slcs t wrpwh t wrpwl t wrpwh t wrpwl t wrpwh t wrpwl t fah t sfa t fdh t sfd n+2 t fdh t sfd n+3 t fdh t sfd t fdh t pepwh t pepwl t=0 t=2 t =1 t=3 t=0 t=2 t=1 t=3 t=6 t=9 t=5 t=8 t=4 t=7
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 57 of 63 10.0 ordering information table 10-1. ordering information ordering code package type ram size # prog i/os 8051 address /data busses cy7c68013a-128ac 128 tqfp 16k 40 16/8 bit cy7c68013a-128axc 128 tqfp ? lead-free 16k 40 16/8 bit cy7c68013a-100ac 100 tqfp 16k 40 ? cy7c68013a-100axc 100 tqfp ? lead-free 16k 40 ? cy7c68013a-56pvc 56 ssop 16k 24 ? cy7c68013a-56pvxc 56 ssop ? lead-free 16k 24 ? CY7C68013A-56LFC 56 qfn 16k 24 ? cy7c68013a-56lfxc 56 qfn ? lead-free 16k 24 ? cy7c68013a-56pvxct 56 ssop ? tape and reel ? lead-free 16k 24 ? cy7c68015a-56lfc 56 qfn 16k 26 ? cy7c68015a-56lfxc 56 qfn ? lead-free 16k 26 ? cy3684 ez-usb fx2lp development kit
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 58 of 63 11.0 package diagrams the fx2lp is available in four packages: ? 56-pin ssop ? 56-pin qfn ? 100-pin tqfp ? 128-pin tqfp. package diagrams 51-85062-*c figure 11-1. 56-lead shrunk small outline package o56 51-85144-*d figure 11-2. 56-lead quad flatpack no lead package (8 ? 8 mm) lf56 dimensions in millimeters e-pad size 6.0 x 6.0 mm (typ).
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 59 of 63 package diagrams (continued) 51-85050-*a figure 11-3. 100-pin thin plastic quad flatpack (14 x 20 x 1.4 mm) a101
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 60 of 63 package diagrams (continued) 51-85101-*b figure 11-4. 128-lead thin plastic quad flatpack (14 x 20 x 1.4 mm) a128
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 61 of 63 ? cypress semiconductor corporation, 2004. the information contained herein is subject to change without notice. cypress semic onductor corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a cypress product. nor does it convey or imply any license under patent or ot her rights. cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agr eement with cypress. furthermore, cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to re sult in significant injury to the user. the inclusion of cypress products in life-support systems application implies that the manu facturer assumes all risk of such use and in doing so indemni fies cypress against all charges. 12.0 pcb layout recommendations [23] the following recommendations should be followed to ensure reliable high-performance operation. ? at least a four-layer impedance controlled boar ds are required to maintain signal quality. ? specify impedance targets (ask your boa rd vendor what they can achieve). ? to control impedance, maintain trace widths and trace spacing. ? minimize stubs to minimize reflected signals. ? connections between the usb connector shell and signal ground must be done near the usb connector. ? bypass/flyback caps on vbus, near connector, are recommended. ? dplus and dminus trace lengths should be kept to within 2 mm of each other in length, with preferred length of 20-30 mm. ? maintain a solid ground plane under the dplus and dminus traces . do not allow the plane to be split under these traces. ? it is preferred is to have no vias pl aced on the dplus or dminus trace routing. ? isolate the dplus and dminus traces from all other signal traces by no less than 10 mm. note: 23. source for recommendations: ez-usb fx2?pcb design recommendations , http://www.cypress.com/cfuploads/support/app_notes/fx2_pcb.pdf and high speed usb platform design guidelines , http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 62 of 63 13.0 quad flat package no leads (qfn) package design notes electrical contact of the part to the pr inted circuit board (pcb) is made by soldering the leads on the bottom surface of the package to the pcb. hence, special attent ion is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. a copper (cu) fill is to be designed into the pcb as a thermal pad under the package. heat is transf erred from the fx2lp through the device?s metal paddle on the bottom si de of the package. heat from here, is conducted to the pcb at the thermal pad. it is then conducted from the thermal pad to the pcb inner gr ound plane by a 5 x 5 array of via. a via is a plated through hole in the pcb with a finished diameter of 13 mil. the qfn?s metal die paddle must be soldered to the pcb?s thermal pad. solder mask is placed on t he board top side over each via to resist solder flow into the via. the mask on the top side also minimizes outgassing during the solder reflow process. for further information on this package design please refer to the application note surface mount assembly of amkor?s microleadframe (mlf) technology . this application note can be downloaded from amkor?s website from the following url http://www.amkor.com/products/ notes_papers/mlf_appnote_0902. pdf. the application note provides detailed information on board mounting guidelines, soldering flow, rework process, etc. figure 13-1 below displays a cross-sectional area underneath the package. the cross section is of only one via. the solder paste template needs to be designed to allow at least 50% solder coverage. the thickness of the solder paste template should be 5 mil. it is recommended that ?no clean? type 3 solder paste is used for mounting the part. nitrogen purge is recommended during reflow. figure 13-2 is a plot of the solder mask pattern and figure 13-3 displays an x-ray image of the assembly (darker areas indicate solder). purchase of i 2 c components from cypress, or one of its sublicensed associated companies, conveys a license under the philips i 2 c patent rights to use these components in an i 2 c system, provided t hat the system conforms to the i 2 c standard specification as defined by philips. ez-usb fx2lp, ez-usb fx2 and renume ration are trademarks, and ez-usb is a registered trademark, of cypress semiconductor. all product and company names mentio ned in this document are the trademarks of their respective holders. 0.017? dia solder mask cu fill cu fill pcb material pcb material 0.013? dia via hole for thermally connecting the qfn to the circuit board ground plane. this figure only shows the top three layers of the circuit board: top solder, pcb dielectric, and the ground plane figure 13-1. cross-section of the area underneath the qfn package figure 13-2. plot of the solder mask (white area) figure 13-3. x-ray image of the assembly
cy7c68015a preliminary cy7c68013a document #: 38-08032 rev. *e page 63 of 63 document history page document title: cy7c68013a ez-usb fx2lp? usb mi crocontroller high-speed usb peripheral controller document number: 38-08032 rev. ecn no. issue date orig. of change description of change ** 124316 03/17/03 vcs new data sheet *a 128461 09/02/03 vcs added pn cy7c68015a throughout data sheet modified figure 1-1 to add ecc block and fix errors removed word compatible where associated with i 2 c corrected grammar and formatting in various locations updated sections 3.2.1, 3.9, 3.11, table 3-9 , section 5.0 added sections 3.15, 3.18.4, 3.20 modified figure 3-5 for clarity updated figure 11-2 to match current spec revision *b 130335 10/09/03 kkv restored ?preliminary? to heade r (had been removed in error from rev. *a) *c 131673 02/12/04 kku section 8.1 changed certified to compliant table 8-1 added parameter v ih_x and v il_x added sequence diagrams section 9.16 updated ordering information with lead-free parts change set-up to setup throughout document updated registry summary section 3.12.4:example changed to column 8 from column 9 updated figure 9-3 memory write timing diagram updated section 3.9 (reset) updated section 3.15 ecc generation *d 230713 see ecn kku changed lead free marketing part numbers in table 10-1 according to spec change in 28-00054. *e 242398 see ecn tmd minor change: datasheet posted to the web,


▲Up To Search▲   

 
Price & Availability of CY7C68013A-56LFC

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X